Open Access Open Access  Restricted Access Subscription or Fee Access

Lignocellulosic Bioethanol Production: Perspectives and Challenges


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Biofuels produced from different lignocellulosic materials have the potential to be a valuable substitute for gasoline. Many physicochemical structural and compositional factors hinder the hydrolysis of cellulose present in biomass to sugars and other organic compounds that can later be converted to fuels. Different pretreatment techniques can change the physical and chemical structure of the lignocellulosic biomass and improve their hydrolysis rates. Many methods have been shown to result in high sugar yields, above 90% of the theoretical yield. Advances in pretreatment and biological-processing steps clearly provide the greatest opportunity to reduce bioethanol costs, and much more emphasis is needed in these areas. For pretreatment, improved process configurations are needed that reduce chemical costs for hemicellulose hydrolysis and subsequent conditioning for biological processing. In addition, energy requirements for biomass milling and heating must be reduced, and less corrosive environments are desired to reduce the cost of vessels.  Future biotechnology-based developments in processing technology will likely include: Improved cellulase and hemicellulase production economics via microbe or plant-based production systems; improved fermentation strains that efficiently utilize both hemicellulose and cellulosic sugars; consolidated bioprocessing microbes which combine the ability to break down cellulosic materials with the ability to efficiently ferment sugars to ethanol.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Bioethanol; Cellulose; Hemicellulose; Residues

Full Text:

PDF


References


Amartey, S.; Jeffries, T. An improvement in Pichia stipitis fermentation of acidhydrolysed hemicellulose achieved by over-liming (calcium hydroxide treatment) and strain adaptation. Wo. J. Microbiol. Biotechnol. 12: 281–283. 1996.

Almeida J. R. M., Modig T., Petersson A, Hahn-Hagerdal B, Lidén G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Tech Biotechnol 82(4), 340-349, 2007.

Aden, A. et al. (2002) Lignocellulosic biomass to ethanol processing design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory Technical Report NREL/TP-510-32438.

Ballesteros,M. Oliva, J.M. Negro, M.J. Manzanares, P. BallesterosI, . Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry 39 1843–1848. 2004.

Bryant, C. and Yassumoto, W. Y. Bagasse-based ethanol from Brazil gearing up for export market. Novozymes North America, USA. Available at www.bioenergy.novozymes.com/.../Brazil-Bagasse_export%20(ISJ)%202009 24322.pdf. Accessed in 2009.

Bisaria, V. S. and T. K. Ghose. Biodegradation of cellulosic materials: Substrates, microorganisms, enzymes and products. Enz. Microb. Technol. 3: 90–104. 1981.

Buchert, J.; Puls, J., Poutanen, K. Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolysates. Appl. Microbiol. Biotechnol. 28: 367–372. 1988.

Carbon and Sustainability Reporting Within the Renewable Transport Fuel Obligation. Department of Transport (UK). Available at: http://www.dft.gov.uk/pgr/roads/environment/rtfo/govrecrfa.pdf. Accessed in 2008.

Deshpande, V. V.; Keskar, S.; Mishra, C., Rao, M. Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa. Enz. Microb. Technol. 8: 149. 1986.

Eveleigh D.E. Cellulase: a perspective. Phil. Trans. R. Soc. Lond. Ser. A. 321: 435-447. 1987.

Galbe, M. Zacchi, G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628. 2002.

Gharpuray MM, Lee YH, Fan LT: Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng, 25(1), 157-172. 1983.

Goettemoeller J., Goettemoeller, A. Sustainable Ethanol: Biofuels, Biorefineries, Cellulosic Biomass, Flex-Fuel Vehicles, and Sustainable Farming for Energy Independence. Praire Oak Publishing, Maryville, Missouri. p. 42. 2007.

Glazer, A. N.; Nikaido, H. From biomass to fuel. In Microbial Biotechnology: Fundamentals of Applied Microbiology, 325–391. New York: W.H. Freeman. 1995.

Grethlein HE: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol, 1985, 3(2):155-160.

Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G. and Zacchi, G. Bio-ethanol – the fuel of tomorrow from the residues of today. Progress in Biophysics and Molecular Biology. 93, 1-8, 2007

Howard R.L., Abotsi E., Jansen R. E.L.; Howard S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology Vol. 2 (12), pp. 602-619. 2003.

Iogen Corp. http://www.iogen.ca/. Accessed in 2009.

Knauf, M.; Moniruzzaman, M. Lignocellulosic biomass processing: A perspective. Int. Sugar J. 106(1263): 147–150. 2004.

Larsson, S., Reimann, A., Nilvebrant, N., Jonsson, L.J. Comparison of different methods for the detoxification of lignocelluloses hydrolysates of spruce. Appl. Biochem. Biotechnol. 77–79, 91–103. 1999.

Lin KW, Ladisch MR, Voloch M, Patterson JA, Noller CH: Effect of pretreatments and fermentation on pore size in cellulosic materials. Biotechnol Bioeng, 27(10), 1427-1433, 1985.

Liquid Biofuels for Transportation in Brazil: Potential and Implications for Sustainable Agriculture and Energy in the 21st Century. Study commissioned by the German Technical Cooperation (GTZ). November 2005.

Lynd, L. R., van Zyl, W. H., McBride, J. E. and Laser, M. Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, 16, 577–583, 2005.

Macedo I., Lima, M. V. L. and Silva, J. A. R. Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil. Secretariat of the Environment, Government of the State of São Paulo. 2004.

d’Moraes, A. Alencar, Y., Oliveira, A., Guesse, R. 2nd Generation Bioethanol – Foundations for Enabling Sustainable Chemistry. Dow Brasil S.A. Abstract presented at the Workshop on Hydrolysis Route for Cellulosic Ethanol from Sugarcane. CTBE, Brasil. 2008.

Mussatto, S.I., 2002. Influência do Tratamento do Hidrolisado Hemicelulosico de Palha de Arroz na Produçãao de Xilitol por Candida guilliermondii. M.Sc. thesis, Faculdade de Engenharia. Química de Lorena, Brasil.

Nigam, J.N. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol. 87, 17–27. 2001.

Nishikawa, N. K.; Sutcliffe, R., Saddler, J. N. The influence of lignin degradation products on xylose fermentation by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 27: 549–552. 1988.

Olofsson, K., Bertilsson, M. and Lidén, G. A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels, 1(7), 1-14. 2008.

Olsson, L.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enz. Microb. Technol. 18: 312–331. 1996.

Palmqvist, E., Hahn-Hagerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technol. 74, 25–33. 2000.

Pandey, A. Biofuels. CRC Press. Taylor & Francis Group, Boca Raton London New York. 2009.

Parajo, J.C., Domınguez, H., Domınguez, J.M. Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresource Technol. 66, 25–40. 1998.

Philippidis, G. P. Cellulose bioconversion technology. In Handbook on Bioethanol: Production and Utilization, Ed. C. E. Wyman, 253–285. Washington, DC: Taylor & Francis. 1996.

Philippidis, G. P.; Smith, T. K. Limiting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol. Appl. Biochem. Biotechnol. 51/52: 117–124. 1995.

Rajagopal, D. and Zilberman, D. Review of environmental, economic and policy aspects of biofuels. Policy Research Working Paper 4341. p. 11-30. 2007.

Rico, J. A. P. Programa de Biocombustíveis no Brasil e na Colômbia: uma análise da implantação, resultados e perspectivas. Masters dissertation thesis, university of São Paulo. 2007.

Reduction of Greenhouse gases. Available at http://www.best-europe.org/Pages/ContentPage.aspx?id=482. Accessed in 2009.

Schell, D. J., Hinman, N. D. Wyman, M. C. E.; Werdene ,P. J. Whole broth cellulose production for use in simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Biochem. Biotechol. 17: 279–291. 1988.

Smeets, Ed., Junginger, M. et al. (August. "Sustainability of Brazilian bio-ethanol". Report: NWS-E-2006-1102. Copernicus Institute at Universiteit Utrecht and Universidade Estadual de Campinas. 2006.

Smith J.E., Anderson J.G., Senior EK, et al. Bioprocessing of lignocelluloses. Phil. Trans. R. Soc. Lond. Ser. A. 321, 507-521. 1987.

Soleimani, M. Tabil, L., Panigrahi, S. Bio-production of a Polyalcohol (Xylitol) from Lignocellulosic Resources: A Review. CSBE/SCGAB 2006 Annual Conference, Edmonton Alberta. The Canadian Society for Bioengineering. Paper No. 06- 106. 2006

Taherzadeh M. J. Karimi K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci., 9, 1621-1651. 2008.

Taherzadeh, M.J., Niklasson, C., Liden, G. On-line control of fed-batch fermentation of dilute-acid hydrolyzates. Biotechnol. Bioeng. 69, 330–338. 2000.

Tengborg, C. et al. Reduced inhibition of enzymatic hydrolysis of steam pretreated softwood. Enzyme Microb. Technol. 28, 835–844. 2001.

11. Thompson DN, Chen HC, Grethlein HE: Comparison of pretreatment methods on the basis of available surface area. Bioresour Technol 1992, 39(2):155-163.

Tolmasquim, M. T.; Szklo, A. S.; Soares, J. B. Designing incentive policies for natural-gas-fired combined heat and power in Brazil. Cogeneration and Distributed Generation Journal, Estados Unidos, v. 20, p. 54-70, 2005.

Walker L.P, Wilson D.B., Enzymatic hydrolysis of cellulose: An Overview. Biores. Technol. 36, 3-14. 1991.

Wright, J. D., Wyman, C. E., Grohmann, K. Simultaneous saccharification and fermentation of lignocellulose. Appl. Biochem. Biotechnol. 18: 75–90. 1988.

Wong KKY, Deverell KF, Mackie KL, Clark TA, Donaldson LA: The relationship between fiber-porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng, 31(5) 447-456. 1988.

Wu, J., Ju, L. K. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 14: 649–652. 1998.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize