Open Access Open Access  Restricted Access Subscription or Fee Access

Rheoviscosimetric Study of Poly(N-isopropylacrylamide) in Water and in the Solvent Mixture (Water-Ethanol), Evidence of High Huggin’s Coefficient


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


This paper presents a rheoviscosimetric study of a thermo-sensitive polymer, poly(N-isopropyl acrylamide) PNIPA, with weight average mass Mw = 17774 Daltons whose LCST is 32 °C. The concentration regimes in water are identified. As solvent, we first used ultra pure water then we added an organic co-solvent (ethanol) with a mass up to 20%. Under shear, the dynamic viscosity of a PNIPA solution with water as solvent versus temperature increases from a critical temperature Tmin very close to the LCST until reaching a maximum at Tmax. Kinematic viscosity measurements do not show this increase in viscosity. It is believed that by deforming the chains of the polymer and bringing the hydrophobic end groups (isopropyl) each other, the shearing causes the formation of aggregates through an inter-chain association at the time of activation of the hydrophobicity of isopropyl groups at ~ 32 °C. The authors found that the gradual addition of ethanol decreases the quality of the solvent; the intrinsic viscosity shows a decrease in the volume occupied by the chain in the solvent mixture. The Huggins coefficient kH confirms this trend by largely positive values in zone I in the presence of ethanol, therefore the authors believe that two contributions (hydrodynamic and Brownian motion) can explain the highness of kH.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Thermo-Sensitive Polymer; Huggin’s Coefficient; Co-Solvent

Full Text:

PDF


References


Bokias, G.; Hourdet, D.; Iliopoulos, I.; Staikos, G.; Audebert, R. Hydrophobic Interactions of Poly(N-isopropylacrylamide) with Hydrophobically modified Poly (sodium acrylate) in Aqueous Solution. Macromolecules 1997, 30, 8293–8297.
http://dx.doi.org/10.1021/ma970884f

Akiyoshi, K.; Kang, E. C.; Kurumada, S.; Sunamoto, J.; Principi, T.; Winnik, F. M. Controlled Association of Amphiphilic Polymers in Water: Thermosensitive Nanoparticles formed by Self-assembly of Hydrophobically modified Pullulans and Poly(N-isopropylacrylamides). Macromolecules 2000, 33(9), 3244–3249.
http://dx.doi.org/10.1021/ma991798d

Bokias, G.; Mylonas, Y. Association of Positively Charged Copolymers Based on N-Isopropylacrylamide with Hydrophobically Modified Poly(sodium acrylate) in Water. Macromolecules 2001, 34, 885–889.
http://dx.doi.org/10.1021/ma001423o

Bokias, G.; Iliopoulos, I.; Hourdet, D.; Staikos, G. Association of Hydrophobically modified poly(sodium acrylate) with cationic copolymers based on N-isopropylacrylamide. Progr. Colloid. Polym. Sci. 2001, 118, 48–52.
http://dx.doi.org/10.1007/3-540-45725-9_11

Duan, M.; Hu, X.; Ren, D. Effects of Poly(N-isopropylacrylamide) on the Solution Properties of Hydrophobically Modified Acrylamide Copolymer. J. Polym. Sci. B 2005, 43, 709.
http://dx.doi.org/10.1002/polb.20376

Yasushi, M.; Tomomi, H.; Isao, I. Change in Hydration State during the Coil-Globule Transition of Aqueous Solutions of poly(N-isopropylacrylamide) as Evidenced by FTIR Spetroscopy. Langmuir 2000, 16(19), 7503–7509.
http://dx.doi.org/10.1021/la0001575

Yoshiaki, T.; Yoshiyuki, Y.; Osamu, N.; Masahiro, N.; Koji, T.; Mati Ur, R.; Kenji, M.; Hideharu, Y.; Satoshi, F.; Teruhiko, M.; Tadamichi, S. Synthesis and Characterisation of High-Quality Skin-Cooling Sheets Containing Thermosensitive Poly(N-isopropylacrylamide). Journal of Biomedical Materials Research Part B: Applied Materials 2011, 98 B, 110–113.
http://dx.doi.org/10.1002/jbm.b.31839

Snowden, M. J.; Marston, N. J.; Vincent, B. The effect of surface modification on the stability characteristics of poly(N-isopropylacrylamide) latices under Brownian and flow conditions. Colloid. Polym. Sci. 1994, 272, 1273–1280.
http://dx.doi.org/10.1007/bf00657781

Snowden, M. J.; Chowdhary, B. Z. Small Sponges with Big Appetites. Chem. Br. 1995, 31, 943–945.
http://dx.doi.org/10.2979/fil.2010.22.3.257

Snowden, M. J.; Thomas, D.; Vincent, B. Use of colloidal microgels for the absorption of heavy metal and other ions from aqueous solution. Analyst. 1993, 118, 1367–1369.
http://dx.doi.org/10.1039/an9931801367

Nakayama, M.; Okano, T.; Winnik, F. Poly(N-isopropylacrylamide)-based Smart Surfaces for Cell Sheet Tissue Engineering. Material Matters 2010, 5, 3, 56–62.
http://dx.doi.org/10.1002/mabi.201200018

Schild, H. G.; Tirrell, D. A. Microcalorimetric Detection of Lower Critical Solution Temperatures in Aqueous Polymer Solutions. J. Phys. Chem. 1990, 94, 4352–4356.
http://dx.doi.org/10.1021/j100373a088

Kubota, K.; Fujishige,S.; Ando, I. Solution Properties of Poly(N-isopropylacrylamide) in water. Polym. J. 1990, 22, 15–20.
http://dx.doi.org/10.1295/polymj.22.15

Winnik, F. M. Phase Transition of Aqueous Poly-(N-isopropylacrylamide) Solutions: a Study by Non-radiative Energy Transfer. Polymer 1990, 31, 2125–2134.
http://dx.doi.org/10.1016/0032-3861(90)90085-d

Schild, H. G.; Tirrell, D. A. Interaction of Poly(N-isopropylacrylamide) with Sodium n-Alkyl Sulfates in Aqueous Solution. Langmuir 1991, 7, 665–671.
http://dx.doi.org/10.1021/la00052a013

Pelton, R. H. Temperature-sensitive aqueous microgels. Adv. Colloid. Interface Sci. 2000, 85, 1–33.
http://dx.doi.org/10.1016/s0001-8686(99)00023-8

McPhee, W.; Tam, K. C.; Pelton, R. J. Poly(N-isopropylacrylamide) Latices Prepared with Sodium Dodecyl Sulfate. Colloid. Interface Sci. 1993, 156, 24–30.
http://dx.doi.org/10.1006/jcis.1993.1075

Saunders, B. R.; Vincent, B. Microgel Particles as Model Colloids: Theory, Properties and Applications. Colloid. Interface Sci. 1999, 80, 1–25.
http://dx.doi.org/10.1016/s0001-8686(98)00071-2

Pelton, R. H.; Chibante, P. Preparation of Aqueous Latices with N-isopropylacrylamide. Colloids Surf. 1986, 20, 247–256.
http://dx.doi.org/10.1016/0166-6622(86)80274-8

Zeng, F.; Tong, Z.; Takahiro, S. Molecular Chain Properties of Poly (N-isopropyl acrylamide). Science in China B 1999, 42, 3, 290–297.
http://dx.doi.org/10.1007/bf02874245

Heskin, M.; Guillett, J. E. Solution properties of poly(Nisopropylacrylamide). J. Macromol. Sci. Chem. A(2) 1968, 8, 1441–1455.
http://dx.doi.org/10.1080/10601326808051910

Otake, H.; Inomata, H.; Konno, M.; Saito, S. A new model for the thermally induced volume phase transition of gels. J. Chem. Phys. 1989, 91, 1345–1350.
http://dx.doi.org/10.1063/1.457157

Schild, H. G. Poly(N-isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163–249.
http://dx.doi.org/10.1016/0079-6700(92)90023-r

Yang, H.; Cheng, R.; Wang, Z. A Quantitative Analyses of the Viscometric Data of the Coil-to-Globule and Globule-to-Coil Transition of Poly(N-isopropylacrylamide) in Water. Polymer 2003, 44, 7175–7180.
http://dx.doi.org/10.1016/j.polymer.2003.09.008

Fujishige, S. Intrinsic Viscosity-Molecular Weight Relationships for Poly(N-isopropylacrylamide) Solutions. Polym. J. (Tokyo) 1987, 19, 297–300.
http://dx.doi.org/10.1295/polymj.19.297

Tam, K. C.; Wu, X. Y.; Pelton, R. H. Viscometry—a Useful Tool for Studying Conformational Changes of Poly(N-isopropylacrylamide) in Solutions. Polymer 1992, 33(2), 436–438.
http://dx.doi.org/10.1016/0032-3861(92)91008-p

Zeng, F.; Zheng, X.; Tong, Z. Network Formation in Poly(N-isopropyl acrylamide)/Water Solutions during Phase Separation. Polymer 1998, 39, 1249–1251.
http://dx.doi.org/10.1016/s0032-3861(97)00471-0

Kazutoshi, H.; Toru, T. Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater. 2002, 14(16), 1120–1124.
http://dx.doi.org/10.1002/1521-4095(20020816)14:16%3C1120::aid-adma1120%3E3.0.co;2-9

De Rossi, D.; Kajiwara, K.; Osad, Y.; Yamudin, A. Polymer Gels Fundamentals and Biomedical Applications, Plenum Press, New York 1991.
http://dx.doi.org/10.1002/pat.1992.220030111

Bischofberger, I.; Trappe, V. New aspects in the phase behaviour of poly-N-isopropyl acrylamide: systematic temperature dependent shrinking of PNiPAM assemblies well beyond the LCST, Scientific Reports 5, 2015, Article number: 15520.
http://dx.doi.org/10.1038/srep15520

Chaoxu L.; Mohammad M. A.; Sreenath Bolisetty; Jozef Adamcik; Raffaele Mezzenga. New biocompatible thermo-reversible hydrogels from PNiPAM-decorated amyloid fibrils. Chem. Commun., 2011,47, 2913–2915.
http://dx.doi.org/10.1039/c0cc05126h

Micciulla, S.; Michalowsky,, J.; Schroer, M. A.; Holm, C.; Klitzing, R.V.; Smiatek, J. Concentration dependent effects of urea binding to poly(N-isopropylacrylamide) brushes: a combined experimental and numerical study. Physical Chemistry Chemical Physics, 2016, 18, 5324–5335
http://dx.doi.org/10.1039/c5cp07544k

Kokardekar, R. R.; Shah, V. K.; and Mody, H. R. Pnipam poly (N-isopropylacrylamide): a thermoresponsive “smart” polymer in novel drug delivery systems. Internet Journal of Medical Update. 2012, vol4, No 2.
http://dx.doi.org/10.1109/nano.2011.6144388

Islam, M. R.; Ahiabu, A.; Li, X.; Serpe, M. J. Poly (N-isopropylacrylamide) Microgel-Based Optical Devices for Sensing and Biosensing. Sensors (Basel), 2014; 14(5), 8984–8995.
http://dx.doi.org/10.3390/s140508984

Wei, J. C.; Dai, Y. F.; Chen, Y. W. Synthesis and Characterization of a New Type of Smart Hydroxyapatite-PNIPAM Hybrid Nanopatrticles, Advanced Materials Research, 2012, 396-398, 35–39.
http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.35

Celebioglu, N.; Gelir, A.; Yilmaz, Y. A new method to synthesize ZnO nanoparticles with size gradient in PNIPAM polymer matrix. Colloid and polymer science, 2016, 294, Issue 6, 1045–1054
http://dx.doi.org/10.1007/s00396-016-3859-x

Eliassaf, J. Aqueous Solutions of poly(N-isopropylacrylamide). J. Appl. Polym. Sci. 1978, 22, 873–874.
http://dx.doi.org/10.1002/app.1978.070220328

Howe, A. J.; Howe, A. M.; Routh, A. L. The Viscosity of Dilute Poly(N-isopropylacrylamide) Dispersions. Journal of colloid and interface Science 2011, 357(2), 300–307.
http://dx.doi.org/10.1016/j.jcis.2011.02.037

Mylonas, Y.; Bokias, G.; Lliopoulos, I.; Staikos, G. Interpolymer Association between Hydrophobically modifiedPpoly(sodium acrylate) and Poly(N-isopropylacrylamide) in Water: The role of Hydrophobic Interactions and Polymer Structure. European Polymer Journal 2006, 42(4), 849–857.
http://dx.doi.org/10.1016/j.eurpolymj.2005.09.024

Yang, L.; Cao, Y.; Chen, Z. Laser-Light-Scattering Study of Internal Motions of Polymer Chains Grafted on Spherical Latex Particles. J. Phys. Chem. B 2004, 108(48), 18479–18484.
http://dx.doi.org/10.1021/jp047403w

Otake, H.; Inomata, H.; Konno, M.; Saito, S. A New Model for the Thermally Induced Volume Phase Transition of Gels. J. Chem. Phys. 1989, 91, 1345–1350.
http://dx.doi.org/10.1063/1.457157

Wey Zhu, P.; Napper, D. H. Coil-to-Globule Type Transitions and Swelling of Poly(N-isopropylacrylamide) and Poly(acrylamide) at Latex Interfaces in Alcohol–Water Mixtures. Journal of Colloid and Interface Science 1996, 177(2), 343–352.
http://dx.doi.org/10.1006/jcis.1996.0042

Shiraga, K.; Naito, H.; Suzuki, T.; Kondo, N.; Ogawa, Y. Hydration and Hydrogen Bond Network of Water during the Coil-to-Globule Transition in Poly(N-isopropylacrylamide) Aqueous Solution at Cloud Point Temperature. J. Phys. Chem. B 2015, 119, 5576–5587.
http://dx.doi.org/10.1021/acs.jpcb.5b01021

Chen, J. H.; Chen, H. H.; Chang, Y. X.; Chuang, P. Y.; Hong, P. D. Effects of Cononsolvency on Preferential Adsorption Phenomenon in Poly(N-isopropylacrylamide) Ternary Solutions. Journal of Applied Polymer Science 2008, 107(4), 2732–2742.
http://dx.doi.org/10.1002/app.27359

Tong, Z.; Zeng, F.; Zheng, X. Inverse Molecular Weight Dependence of Cloud Points for Aqueous Poly(N-isopropylacrylamide) Solutions. Macromolecules, 1999, 32(13), 4488–4490.
http://dx.doi.org/10.1021/ma990062d

Fujishige, S.; Kubota, K.; Ando, I. Phase Transition of Aqueous Solutions of Poly(N-isopropylacrylamide) and Poly(N-isopropylmethacrylamide). J. Phys. Chem. 1989, 93, 3311–3313.
http://dx.doi.org/10.1021/j100345a085

Badiger, M. V.; Wolf, B. A. Shear Induced Demixing and Rheological Behavior of Aqueous Solutions of Poly(N-isopropylacrylamide). Macromol. Chem. Phys. 2003, 204, 600–606.
http://dx.doi.org/10.1002/macp.200390026

Śliwa, T.; Jarzębski, M. Dynamic Light Scattering Investigation of Pnipam-Co-Maa Microgel Solution. Current Topics in Biophysics, 2015, 37 issue 1.
http://dx.doi.org/10.2478/ctb-2014-0071

Wei, J.; Cai, J.; Li, Y.; Wu, B.; Gong, X.; Ngai, T. Investigation of cell behaviors on thermo-responsive PNIPAM microgel films. Colloids and Surfaces B: Biointerfaces, 2015, 132, 202–207.
http://dx.doi.org/10.1016/j.colsurfb.2015.05.011

Destribats, M.; Lapeyre, V.; Sellier, E.; Varga, I.; Ravaine, V.; Schmitt V. Impact of pNIPAM Microgel Size on their Ability to stabilize Pickering Emulsions. Langmuir, 2014, 30, 1768–1777.
http://dx.doi.org/10.1021/la4044396

Virtanen, O. L. J.; Purohit, A.; Brugnoni, M.; Wöll, D.; Richtering, D. Controlled synthesis and fluorescence tracking of highly uniform poly(N-isopropylacrylamide) microgels. Journal of Visualized Experiments, 2016,
http://dx.doi.org/10.3791/54419

Virtanen, O. L. J.; Ala-Mutka, H. M.; Richtering, W. Can the Reaction Mechanism of Radical Solution Polymerization Explain the Microgel Final Particle Volume in Precipitation Polymerization of N -Isopropylacrylamide? Macromolecular Chemistry and Physics, 2015, 216(13), 1431–1440.
http://dx.doi.org/10.1002/macp.201500118

Schmid, A. J.; Riest, J.; Eckert, T.; Lindner, P.; Nägele, G.; Richtering, W. Comparison of the Microstructure of Stimuli Responsive Zwitterionic PNIPAM-co-Sulfobetaine Microgels with PNIPAM Microgels and Classical Hard-Sphere Systems. Zeitschrift für Physikalische Chemie, 2014, 228(10-12), 1033–1052.
http://dx.doi.org/10.1515/zpch-2014-0559

Li, Z.; Geisel, K.; Richtering, W.; Ngai, T. Poly(N-isopropylacrylamide) microgels at the oil–water interface: adsorption kinetics. Soft Matter, 2013, 9(41), 9939–9946.
http://dx.doi.org/10.1039/c3sm52168k

Kojima, H.; Tanaka, F.; Scherzinger, C.; Richtering, W. Temperature dependent phase behavior of PNIPAM microgels in mixed water/methanol solvents. Journal of Polymer Science Part B: Polymer Physics, 2012, 51(14), 1100–1111.
http://dx.doi.org/10.1002/polb.23194

Conley, G. M.; Nojd, S. L.; Braibanti, M.; Schurtenberger, Peter L.; Scheffold, F. Superresolution microscopy of the volume phase transition of pNIPAM microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 18–23.
http://dx.doi.org/10.1016/j.colsurfa.2016.03.010

Nigro, V.; Angelini, R.; Bertoldo, M.; Castelvetro, V.; Ruocco, G. Barbara, B. Dynamic light scattering study of temperature and pH sensitive colloidal microgels. Journal of Non-Crystalline Solids, 2015, 407, 361–366.
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.039

Liao, W.; Zhang, Y.; Guan, Y.; Zhu, X. Fractal structures of the hydrogels formed in situ from poly (N-isopropylacrylamide) microgel dispersions. Langmuir, 2012, 28, 10873–10880.
http://dx.doi.org/10.1021/la3016386

Gan, T.; Guan, Y.; Zhang, Y. Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis. J. Mater. Chem., 2010, 20, 5937–5944.
http://dx.doi.org/10.1039/c0jm00338g

Liao, W.; Zhang, Y.; Guan, Y.; Zhu, X. Gelation kinetics of thermosensitive PNIPAM microgel dispersions. Macromol. Chem. Phys., 2011, 212, 2052–2060.
http://dx.doi.org/10.1002/macp.201100137

Shen, J.; Ye, T.; Chang, A.; Wu, W.; Zhou, S. A colloidal supra-structure of responsive microgels as a potential cell scaffold. Soft Matter, 2012, 8, 12034–12042.
http://dx.doi.org/10.1039/c2sm26885j

Howe, A. M.; Desrousseaux, S.; Lunel, L. S.; Tavacoli, J.; Yow, H. N.; Routh, A. F. Anomalous Viscosity Jump during the Volume Phase Transition of Poly(N-isopropylacrylamide) Particles. Advances in Colloid and Interface Science 2009, 147-148, 124–131.
http://dx.doi.org/10.1016/j.cis.2008.07.008

Scherzinger, C.; Schwarz, A.; Bardow, A.; Leonhard, K.; Richtering, W. Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels. Current Opinion in Colloid and Interface Science, 2014, 19(2), 84–94.
http://dx.doi.org/10.1016/j.cocis.2014.03.011

Hofmann, C. H.; Grobelny, S.; Erlkamp, M.; Winter, R.; Richtering, W. Influence of high-pressure on cononsolvency of poly(N-isopropylacrylamide) nanogels in water/methanol mixtures. Polymer, 2014, 55(8), 2000–2007.
http://dx.doi.org/10.1016/j.polymer.2014.03.006

Bischofberger, I.; Calzolari, D. C. E.; Trappe, V. Co-nonsolvency of PNiPAM at the transition between solvation mechanisms. Soft Matter, 2014, 10, 8288–8295.
http://dx.doi.org/10.1039/c4sm01345j

Pamies, R.; Hernández Cifre, J. G.; López Martínez, M.; García de la Torre, J. Determination of Intrinsic Viscosities of Macromolecules and Nanoparticles. Comparison of Single-Point and Dilution Procedures. Colloid. Polym. Sci. 2008, 286, 1223–1231.
http://dx.doi.org/10.1007/s00396-008-1902-2

Kurata, M.; Tsunashima, Y. Viscosity-molecular Weight Relationships and Unperturbed Dimensions of Linear Chain Molecules, 3rd edn. Wiley, New York 1998.
http://dx.doi.org/10.1002/0471532053.bra049

Yamakawa, H. Concentration Dependence of Polymer Chain Configurations in Solution. Macromolecules 1961, 34, 1360–1372.
http://dx.doi.org/10.1063/1.1731745

Harvey, J. D.; Geddes, R.; Wills, P. R. Conformational Studies of BSA using Laser Light Scattering. Biopolymers 1979, 18, 2249–2260.
http://dx.doi.org/10.1002/bip.1979.360180912

Batchelor, G. K. The effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles. J. Fluid. Mech. 1977, 83, 97–117.
http://dx.doi.org/10.1017/s0022112077001062

Peterson, J. M.; Fixman, M. Viscosity of Polymer Solutions. J. Chem. Phys. 1963, 39, 2516–2523.
http://dx.doi.org/10.1063/1.1734055

Lavialle, F.; De Foresta, B.; Vacher, M.; Nicot, C.; Alfsen, A. The Molecular Size and Shape of the Folch-Pi Apoprotein in Aqueous and Organic Solvents. Eur. J. Biochem. 1979, 95, 561–567.
http://dx.doi.org/10.1111/j.1432-1033.1979.tb12997.x

Nandi, P.; Bhattarai, A.; Das, B. Intrinsic Viscosities of Sodium Carboxymethylcellose in Acetonitrile–Water mixed Solvent Media using Isoionic Dilution Method. J. Polym. Sci. B Polym. Phys. Ed. 2007, 45, 1765–1770.
http://dx.doi.org/10.1002/polb.21093

Tirrell, M.; Middleman, S. Urease Oligomerizes in a Linear Pattern: Further Hydrodynamic Evidence from Intrinsic Viscosity Theories and Measurement. Biopolymers 1979, 18, 59–72.
http://dx.doi.org/10.1002/bip.1979.360180107

Rholan, M.; Nicolas, P.; Cohen, P. Binding of Neurohypophyseal Peptides to Neurophysin Dimer Promotes the Formation of Compact and Spherical Complexes. Biochemistry 1982, 21, 4968–4973.
http://dx.doi.org/10.1021/bi00263a021

Durand, A. : «Etude de copolymères hydrosolubles thermo-associatifs à base de poply-N-isopropylacrylamide: synthèse, propriétés rhéologiques et caractéristiques des agrégats hydrophobes formés» PHD Thesis, Université Paris VI, 1998.
http://dx.doi.org/10.1051/lait:196847720

Bicerano, J.; Douglas, J. F.; Brune, D. A. Model for the Viscosity of Particle Dispersions. Polymer reviews 1999, 39(4), 561–642.
http://dx.doi.org/10.1081/mc-100101428

Douglas, J. F.; Garboczi, E. J. Intrinsic Viscosity and the Polarizability of Particles Having a Wide Range of Shapes. Adv. Chem. Phys. 1995, 91, 85–153.
http://dx.doi.org/10.1002/9780470141502.ch2

Batchelor, G. K.; Green, J. T. The Determination of the Bulk stress in a Suspension of Spherical Particles to Order c2. J. Fluid. Mech. 1972, 56, 401–427.
http://dx.doi.org/10.1017/s0022112072002435

Russel, W. B. The Huggins Coefficient as a means for Characterizing Suspended Particles. J. Chem. Soc., Faraday Trans., Part 2, 1984, 80, 31–41.
http://dx.doi.org/10.1039/f29848000031

Berry, D. H.; Russel, W. B. The Rheology of Dilute Suspensions of Slender Rods in Weak Flows. J. Fluid Mech. 1987, 180, 475–494.
http://dx.doi.org/10.1017/s0022112087001915

Shaqfeh, E. S. G.; Fredrickson, G. H. The Hydrodynamic Stress in a Suspension of Rods. Phys. Fluids A 1990, 2, 7–24.
http://dx.doi.org/10.1063/1.857683


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize