Open Access Open Access  Restricted Access Subscription or Fee Access

Excitation by Electron Impact of Quintet and Septet Levels of Gadolinium Atom Belonging to 4f85d6s Configuration


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Inelastic collisions of electrons with gadolinium atoms are studied using the method of extended crossing beams with recording of optical signal emitted by excited atoms. Sixty-one excitation cross-sections of quintet and septet levels belonging to the 4f85d6s configuration have been measured at incident electron energy of 30 eV. Five optical excitation functions have been recorded in the electron energy range between the excitation threshold and 200 eV. The excitation process occurs as a result of a forbidden transition 6s → 4f.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Gadolinium Atom; Excitation Cross-Section; Optical Excitation Function; Spectral Line; Energy Level

Full Text:

PDF


References


C. R. Cowley et al, Abundances in Przybylski’s star, Mon. Not. Roy. Astron. Soc. 317 (2000), 299–309.

T. A. Ryabchikova et al, Abundance analyses of roAp stars. VI. 10 Aql and HD 122970, Astron. Astrophys. 357 (2000), 981–987.

O. Kochukov, Atmospheric parameters and chemical composition of the ultra-cool roAp star HD 213637, Astron. Astrophys. 404 (2003), 669–676.
http://dx.doi.org/10.1051/0004-6361:20030506

D. Y. Chen et al, Research on diffusion-bonding composite YVO4/GdVO4 crystal, Laser Phys. Lett. 8 (2011), 46–49.
http://dx.doi.org/10.1002/lapl.201010095

D. Zhang et al, 3.76 W of green light generated by intracavity frequency doubling of a 1081.5 nm Yb:GdYSiO2 laser with LiB3O5, Laser Phys. Lett. 8 (2011), 668–671.

Xu Jin-Long et al, Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal, Opt. Mater. 33 (2011), 1766–1769.
http://dx.doi.org/10.1016/j.optmat.2011.06.005

Ji Yuexia et al, Spectroscopic analysis of Nd3+: Ca3Gd2(BO3)4 crystal and laser operating at 1.06 nm, Alloys and Compounds 509 (2011), 9753–9757.
http://dx.doi.org/10.1016/j.jallcom.2011.08.018

Dou Renqin et al, Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal, Opt. Mater. 42 (2015), 56–61.

M. A. Pampillon et al, Optimization of in situ plasma oxidation of metallic gadolinium thin films deposited by high pressure sputtering on silicon, J. Vac. Sci. and Tachnol. B 31 (2013), 01A112 pp. 1–6.
http://dx.doi.org/10.1116/1.4769893

A. A. Fronia et al, Radiation of the nanosecond laser plasma of gadolinium, Brief Commun. on Phys. of Phys. Inst. of Rus. Acad. Sci. No 4 (2015), 38–45.

B. W. Li et al, Dielectronic recombination of Pd-like gadolinium, Phys. Rev. A 85 (2012), 012712.
http://dx.doi.org/10.1103/physreva.85.012712

Ph. Cahuzac, Raies laser infrarouges dans les vapeurs de terres rares et d’alkalino-terreux, J. de Phys. 32 (1971), 499–505.
http://dx.doi.org/10.1051/jphys:01971003207049900

V. A. Gerasimov, Gas-discharge pulsed laser on holmium vapor, Opt. Spectrosc. 87 (1999), 156–158.

V. A. Gerasimov and L. N. Starkova, Generation of pulsed laser radiation in dysprosium vapors, Opt. Spectrosc. 92 (2002), 335–337.
http://dx.doi.org/10.1134/1.1454047

M. J. Linevsky and T. W. Karras, An iron-vapor laser, Appl. Phys. Lett. 33 (1978), 720–721.
http://dx.doi.org/10.1063/1.90514

H. Ninomiya and K. Hirata, Laser action of optically pumped atomic titanium vapor, J. Appl. Phys. 66 (1989), 2219–2220.
http://dx.doi.org/10.1063/1.344273

K. Hirata et al, Characteristics of an optically pumped titanium vapor laser, J. Appl. Phys. 68 (1990), 1460–1464.
http://dx.doi.org/10.1063/1.346674

H. Ninomiya et al, Temporal behavior of population densities of V atoms in an optically pumped V vapor laser, J. Appl. Phys. 71 (1992), 3181–3185.
http://dx.doi.org/10.1063/1.350960

L. L. Shimon et al, Experimental studies of effective excitation cross-sections of the gadolinium atom spectral lines by electron impact, Opt. Spectrosc. 56 (1984), 601–606.

Yu. M. Smirnov, Excitation of the undecuplet levels of gadolinium atom belonging to 4f75d26p configuration, Opt. Spectrosc. 114 (2013), 492–499.
http://dx.doi.org/10.1134/s0030400x1304019x

Yu. M. Smirnov, Excitation of gallium one-charged ion in e-Ga collisions, J. Phys. B: At. Mol. Opt. Phys. 48 (2015), 165204 (11pp). DOI: 10.1088/0953-4075/48/16/165204.
http://dx.doi.org/10.1088/0953-4075/48/16/165204

R. K. Peterkop, Calculation of excitation cross-sections of vanadium and manganese, Opt. Spectrosc. 58 (1985), 14–18.

W. C. Martin, R. Zalubas and L. Hagan, Atomic energy levels. The rare earth elements (NBS, Washington, 1978).
http://dx.doi.org/10.6028/nbs.nsrds.60

S. M. Afzal et al, Isotope shift studies in the spectra of Gadolinium in UV region and term shifts of high even levels of GdI, Z. Phys. D 41 (1997), 95–100.
http://dx.doi.org/10.1007/s004600050295

B. K. Ankush and M. N. Deo, Fourier transform high-resolution spectroscopic studies of GdI: optical isotope shifts in the spectral region of 18700–20200 cm-1, Phys. Scripta 81 (2010), 055301 (7pp). DOI: 10.1088/0031-8949/81/05/055301.
http://dx.doi.org/10.1088/0031-8949/81/05/055301


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize