Axisymmetric High Temperature Jet Behaviours Based on a Lattice Boltzmann Computational Method. Part I: Argon Plasma
(*) Corresponding author
DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)
Abstract
This article aims to address the issue of simulating plasma-jet by using an innovative computational approach namely the Lattice Boltzmann Method (LBM) from the point of view of extending the applications to simulating flows with temperature-dependent physical parameters. The work focuses on the phenomena occurring in plasma-jet that define the link between LBM lattice and physical lattice. High temperature dependence of the plasma parameters is considered. Argon characteristics fall into this category. This gas is one of the most ones used in plasma spraying. Complex thermal plasma jet phenomena and basis of classical methods in CFD (discretisation, stability condition, modeling…), in one side, and the simple scheme of the Boltzmann equation which is particularly adopted for simulating gases flows, in the other side, give us the possibility of taking out the dynamic and thermal characteristics of this complex flow. An important section on validation of this model includes details of available reference results is presented and discussed. It focuses mainly on the validation of our results with previous numerical and experimental results based on the centerline temperature and velocity profiles, its distributions over the computational domain and eventually the effect of the computational domain size. The jet width, the Gaussian radial profiles and the effects of inlet quantities are analyzed. A real spraying configuration is also examined. The quality of the results shows a great efficiency for the lattice Boltzmann method.
Copyright © 2016 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
Marioux G., Fauchais P., Vardelle M., Pateyron B., Modeling of the plasma spray process: From powder injection to coating formation, High Temperature Material Processes, 5 (1), pp. 61-85 (2001).
http://dx.doi.org/10.1615/hightempmatproc.v5.i1.50
E. Pfender, C. H. Chang, Plasma spray jets and plasma-particulates interactions: modeling and experiments, Proceedings of the 15th International thermal spray conference, 25-29 May 1998, Nice, France.
D.-Y. Xu, X.-C. Wu, Xi Chen, Motion and heating of non-spherical particles in a plasma jet, Surface and Coatings Technology 171 (2003) 149–156.
http://dx.doi.org/10.1016/s0257-8972(03)00259-7
P. Fauchais, Understanding plasma spraying: Topical review, J. Phys. D: Appl. Phys. 37 (2004) R86–R108.
http://dx.doi.org/10.1088/0022-3727/37/9/r02
Ben Ettouil F., Mazhorova O., Pateyron B., Ageorges H. M., El Ganaoui M., Fauchais P., Predicting dynamic and thermal histories of agglomerated particles injected within a d.c. plasma jet, Surface and Coatings Technology, 202 (18), pp. 4491-4495, (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.04.032
F. Qunbo, W. Lu, W. Fuchi, 3D simulation of the plasma jet in thermal plasma spraying Journal of Materials Processing Technology 166 (2005) 224–229.
http://dx.doi.org/10.1016/j.jmatprotec.2004.08.022
H.-B. Xiong , L.-L. Zheng , S. Sampath, R. L. Williamson, J. R. Fincke, Three-dimensional simulation of plasma spray: effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior, Int. J. Heat and Mass Transfer 47 (2004) 5189–5200.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.07.005
D.-Y. Xu,X. Chen, Effects of surrounding gas on the long laminar argon plasma jet characteristics, International Communications in Heat and Mass Transfer 32 (2005) 939–946.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2004.09.002
H.-P. Li, X. Chen, Three-dimensional simulation of a plasma jet with transverse particle and carrier gas injection, Thin Solid Films 390 2001 175-180.
http://dx.doi.org/10.1016/s0040-6090(01)00915-4
K. Cheng,X. Chen, Prediction of the entrainment of ambient air into a turbulent argon plasma jet using a turbulence-enhanced combined-diffusion-coefficient method, International Journal of Heat and Mass Transfer 47 (2004) 5139–5148.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.06.028
Dupuis, From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river, Univ. Genève, Thesis N°3356 (2002).
F. Qunbo, W. Lu, W. Fuchi, Modeling influence of basic operation parameters on plasma jet, Journal of materials processing technology 198 (2008) 207–212.
http://dx.doi.org/10.1016/j.jmatprotec.2007.07.008
Ahmed, T. L. Bergman, Three-dimensional simulation of thermal plasma spraying of partially molten ceramic agglomerates, Journal of Thermal Spray Technology, Volume 9(2) -215; (2000).
http://dx.doi.org/10.1361/105996300770349953
G. Delluc, H. Ageorges, B. Pateyron, P. Fauchais, Fast modelling of plasma jet and particle behaviours in spray conditions, High Temp. Mat. Processes, 9, (2005) 211-226.
http://dx.doi.org/10.1615/hightempmatproc.v9.i2.30
Andrew K. Gunstensen, Daniel H. Rothman; Lattice Boltzmann model of immiscible fluids, Phys. Rev. A 43, 4320 - 4327 (1991).
http://dx.doi.org/10.1103/physreva.43.4320
Xiaowen Shan and Hudong Chen; Lattice Boltzmann model for simulating flows with multiple phases and components; Phys. Rev. E 47, 1815 - 1819 (1993).
http://dx.doi.org/10.1103/physreve.47.1815
S. Succi, E. Foti, F. Higuera, Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method, Europhys. Lett. 10 433-438 (1989).
http://dx.doi.org/10.1209/0295-5075/10/5/008
R. Djebali, M. El Ganaoui, H. Sammouda, R. Bennacer, Some benchmarks of a side wall heated cavity using lattice Boltzmann approach, FDMP, vol.164, n°1, pp. 1-21, (2009).
http://dx.doi.org/10.3166/ejcm.18.217-238
S. Martys Nicos, Chen Hudong, Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Physical Review E, Volume 53, Issue 1, pp.743-750, (1996).
http://dx.doi.org/10.1103/physreve.53.743
Xiaowen Shan, Gary Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, Journal of Statistical Physics, vol.81, n°1/2, (1995).
http://dx.doi.org/10.1007/bf02179985
E. Semma, M. El Ganaoui, R. Bennacer, Lattice Boltzmann method for melting/solidification problems, C. R. Mécanique, 335, pp. 295-303, (2007).
http://dx.doi.org/10.1016/j.crme.2007.05.015
M. Jami, A. Mezrhab, M. Bouzidi, P. Lallemand, Lattice Boltzmann method applied to the laminar natural convection in an enclosure with a heat-generating cylinder conducting body; Int. J. Thermal Sci., 46, pp. 38-47, (2007).
http://dx.doi.org/10.1016/j.ijthermalsci.2006.03.010
R. Djebali, M. El Ganaoui, H. Sammouda, Investigation of a side wall heated cavity by using lattice Boltzmann method, European Journal of Computational Mechanics, VOL 18/2, pp.217-238, (2009).
http://dx.doi.org/10.3166/ejcm.18.217-238
E. Semma, M. El Ganaoui, R. Bennacer, A. A. Mohamad, Investigation of flows in solidification by using the lattice Boltzmann method, Int. J. Thermal Sci, 47, pp. 201-208. (2008).
http://dx.doi.org/10.1016/j.ijthermalsci.2007.02.010
Xiaowen Shan, Gary Doolen, Diffusion in a multicomponent lattice Boltzmann equation model, Phys. Rev. E 54, 3614 - 3620 (1996).
http://dx.doi.org/10.1103/physreve.54.3614
H. Zhang, S. Hu, G. Wang, J. Zhu, Modeling and simulation of plasma jet by lattice Boltzmann method, Applied Mathematical Modelling 31 1124–1132(2007).
http://dx.doi.org/10.1016/j.apm.2006.03.028
H. Zhang, S. Hu, G. Wang, Simulation of powder transport in plasma jet via hybrid Lattice Boltzmann method and probabilistic algorithm, Surface & Coatings Technology 201 (2006) 886–894.
http://dx.doi.org/10.1016/j.surfcoat.2006.01.006
G. Zhou, Axisymmetric lattice Boltzmann method, Physical Review E 78, 036701 (2008).
http://dx.doi.org/10.1103/physreve.78.036701
Pateyron M. F. Elchinger, G. Delluc, P. Fauchais, Sound velocity in different reacting thermal plasma systems, Plasma Chemistry and Plasma Processing, 16 (1), 39-57, (1996).
http://dx.doi.org/10.1007/bf01465216
Y. Peng, C. Shu, Y.T. Chew, J. Qiu, Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method, Journal of Computational Physics 186 (2003) 295–307.
http://dx.doi.org/10.1016/s0021-9991(03)00067-6
S. Mukherjee, J. Abraham, Lattice Boltzmann simulations of two-phase flow with high density ratio in axially symmetric geometry; Physical Review E 75, 026701 2007.
http://dx.doi.org/10.1103/physreve.75.026701
T. Reis, T. N. Phillips, Modified lattice Boltzmann model for axisymmetric flows, Physical Review E 75, 056703 2007.
http://dx.doi.org/10.1103/physreve.76.059902
T. Reis, T. N. Phillips,Numerical validation of a consistent axisymmetric lattice Boltzmann model, Physical Review E 77, 026703 2008.
http://dx.doi.org/10.1103/physreve.77.026703
S. Chen, J. Tölke, S. Geller, M. Krafczyk, Lattice Boltzmann model for incompressible axisymmetric flows, Physical Review E 78, 046703,(2008).
http://dx.doi.org/10.1103/physreve.78.046703
N. Premnath, J. Abraham, Lattice Boltzmann model for axisymmetric multiphase flows, Physical Review E 71, 056706 2005.
http://dx.doi.org/10.1103/physreve.71.056706
X. He, S. Chen, G. D. Doolen, (1998): A novel thermal model for the lattice Boltzmann method in incompressible limit, Journal of Computational Physics, 146, pp. 282-300.
http://dx.doi.org/10.1006/jcph.1998.6057
D’Orazio A., Corcione M., Celata G. P., Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition, Int. J. Therm. Sci. 43 575–86. (2004).
http://dx.doi.org/10.1016/j.ijthermalsci.2003.11.002
J. Smagorinsky, General circulation experiments with the primitive equations: I. the basic equations. Mon. Weather Rev., 91:99–164, 1963.
http://dx.doi.org/10.1175/1520-0493(1963)091%3C0099:gcewtp%3E2.3.co;2
Meillot E., Vardelle A., Coudert J. F., Pateyron B., Fauchais P. Plasma spraying using Ar-He-H2 gas mixtures, Proceedings of the International Thermal Spray Conference 1, pp. 803-808 (1998).
http://dx.doi.org/10.1361/105996399770350232
Pateyron G. Delluc, N. Calvé, T&TWinner, the chemistry of non-line transport properties in interval 300K to 20000 K, Mécanique et industries 6 (6), pp. 651-654, 2005.
http://dx.doi.org/10.1051/meca:2006011
B. Pateyron, G. Delluc, P. Fauchais, Chemical and transport properties of carbon-oxygen hydrogen plasmas in isochoric conditions, Plasma Chemistry and Plasma Processing, 25, 485-502, 2005.
http://dx.doi.org/10.1007/s11090-005-4994-1
Azzou P. Denoirjean, T. Kameyama, T. Sugiyama, P. Blanchart,
http://dx.doi.org/10.1111/j.1551-2916.2009.02927.x
Experiments and Model Simulations of the Viscosity and Dilatation of Glass Coatings with Temperature Dependence, J. Am. Ceram. Soc., 92 (3) 616-622 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.02927.x
Pateyron B., Elchinger M. F., Delluc G., Fauchais P., Sound velocity in different reacting thermal plasma systems, Plasma Chemistry and Plasma Processing 16 (1), pp. 39-57 (1996).
http://dx.doi.org/10.1007/bf01465216
Pateyron B., Thèse de doctorat d'Etat, Université de Limoges (2 Juillet 1987), N° 21-1987, 1987.
Pateyron M. F. Elchinger, G. Delluc, J. Aubreton, First CODATA Symposium Thermodynamic and thermophysical properties Data base (Paris 3-12 Septembre 1985).
“Jets&Poudres” free downlowd from http://www.unilim.fr/spcts or http://jets.poudres.free.fr
S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond (book).
http://dx.doi.org/10.1016/0167-2789(91)90292-h
D.-Y. Xu, X.Chen, K. Cheng, Three-dimensional modelling of the characteristics of long laminar plasma jets with lateral injection of carrier gas and particulate matter, J. Phys. D: Appl. Phys. 36 (2003) 1583–1594.
http://dx.doi.org/10.1088/0022-3727/36/13/324
Ramachandran N. Kikukawa, H. Nishiyama, 3D modeling of plasma–particle interactions in a plasma jet under dense loading conditions, Thin Solid Films 435 (2003) 298-306.
http://dx.doi.org/10.1016/s0040-6090(03)00335-3
K. Cheng, X. Chen, W. Pan, Comparison of Laminar and Turbulent Thermal Plasma Jet Characteristics - A Modeling Study, Plasma Chem Plasma Process (2006) 26:211-235.
http://dx.doi.org/10.1007/s11090-006-9006-6
H. Chang, J. D. Ramshaw, Numerical simulation of nonequilibrium effects in an argon plasma jet, Phys. Plasmas 1 (11), November 1994.
http://dx.doi.org/10.1063/1.870905
H. Chang, J. D. Ramshaw, Modeling of nonequilibrium effects in a high-velocity nitrogen-hydrogen plasma jet, Plasma Chem. Plasma Process, 16, 5S-17S (1996).
http://dx.doi.org/10.1007/bf01512624
H.-P. Li, X. Chen, Three-dimensional modeling of the turbulent plasma jet impinging upon a flat plate and with transverse particle and carrier-gas injection, Plasma Chemistry and Plasma Processing, Vol. 22, No. 1, 2002.
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize