Solving Microscale Heterogeneous Matrix Diffusion Based on Two and Three-Dimensional Computing Using X-Ray Tomography Image Data


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Matrix diffusion is widely cited as a critical transport process controlling the arrival times of tracers in porous media. We determine the memory function implemented in the sink/source term of the transport equation, to characterize diffusion in microscale heterogeneous rock matrix. A lagrangian method in time domain is used to solve transport by diffusion in the matrix. The properties that control diffusion (i.e., mobile-immobile interface and immobile domain cluster shapes, porosity, and tortuosity) are investigated by X-ray microtomography, where the main characteristics of matrix diffusion are captured by 2-D and 3-D calculations. Results of the memory function appeared to be different. A priori, the diffusion paths in 3-D are longer than those observed in 2-D, and they are controlled by the properties mentioned above. Simulation results using three-dimensional computations provide more accurate definition of the memory function rather than the two-dimensional calculations, providing a deeper understanding of the late time behaviour of breakthrough curves (BTCs).
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Matrix Diffusion; Time Domain Random Walk; Memory Function; Transport; Simulation

Full Text:

PDF


References


Abdelghani, F-B., Aubertin, M., Simon, R. and Therrien, R., 2014, Simulations numériques de l’écoulement de l’eau et du transport de contaminants autour de rejets miniers entreposés dans un massif rocheux fracturé. Journal of Water Science, Volume 27, numéro 1, 2014, p. 1 - 19.
http://dx.doi.org/10.7202/1021979ar

Neretnieks, I., 1980, Diffusion in the rock matrix: An important factor inradio nuclide retardation, J. Geophys. Res., 85 (B8), 4379 - 4397.
http://dx.doi.org/10.1029/jb085ib08p04379

Shapiro, A. M., 2001, Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock, Water Resour. Res., 37(3), 507 - 522.
http://dx.doi.org/10.1029/2000wr900301

Zhou, Q., Liu, H.-H., Molz, F. J., Zhang, Y. and Bodvarsson, G. S., 2007, Field-scale effective matrix diffusion coefficient for fractured rock: Results from literature survey, J. Contam. Hydrol., 93, 161 - 187.
http://dx.doi.org/10.1016/j.jconhyd.2007.02.002

Gouze, P., Melean, Y., Borgne, T. L., Dentz, M., Carrera, J., 2008, Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion, Water Resour. Res., 44, W11416.
http://dx.doi.org/10.1029/2007wr006690

Berkowitz, B., Scher, H. and Silliman, S. E., 2000, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res., 36(1), 149 - 158.
http://dx.doi.org/10.1029/1999wr900295

Meigs, L. C., and Beauheim, R. L., 2001, Tracer tests in a fractured dolomite, 1, Experimental design and observed tracer recoveries, WaterResour. Res., 37(5), 1113 - 1128.
http://dx.doi.org/10.1029/2000wr900335

Levy, M., and Berkowitz, B., 2003, Measurement and analysis of non- Fickian dispersion in heterogeneous porous media, J. Contam. Hydrol., 64(3 - 4), 203 - 226.
http://dx.doi.org/10.1016/s0169-7722(02)00204-8

Sardini, P., Delay, F., Hellmuth, K.-H., Porel, G. and Oila, E., 2003, Interpretation of out-diffusion experiments on crystalline rocks using randomwalk modeling, J. Contam. Hydrol., 61(1 - 4), 339 - 350.
http://dx.doi.org/10.1016/s0169-7722(02)00124-9

Sardini, P., Robinet, J. C., Siitari-Kauppi, M., Delay, F. and Hellmuth, K. H., 2007, Direct simulation of heterogeneous diffusion and inversion procedure applied to an out-diffusion experiment. Test case of Palmottugranite, J. Contam. Hydrol., 93 (1 - 4), 21- 37.
http://dx.doi.org/10.1016/j.jconhyd.2007.01.011

Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G. and Guimera, J., 1998, On matrix diffusion, Formulations, solutions methods and qualitative effects, Hydrogeol. J., 6(1), 178 - 190.
http://dx.doi.org/10.1007/s100400050143

Haggerty, R., McKenna, S. A. and Meigs, L. C., 2000, On the late-time behavior of tracer test breakthrough curves, Water Resour. Res., 36(12), 3467 - 3480.
http://dx.doi.org/10.1029/2000wr900214

Haggerty, R., Fleming, S. W., Meigs, L. C. and McKenna, S. A., 2001, Tracer tests in a fractured dolomite: 2. Analysis of mass transfer insingle-well injection-withdrawal tests, Water Resour. Res., 37(5), 1129 - 1142.
http://dx.doi.org/10.1029/2000wr900334

Haggerty, R., Harvey, C. F., Freiherr von Schwerin, C. and Meigs, L. C. 2004, What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results, Water Resour. Res., 40, W01510.
http://dx.doi.org/10.1029/2002wr001716

Salamon, P., Garcia, D.F., Hernandez, J.G., 2006, A review and numerical assessment of the random walk particle tracking method, J. Contam. Hydrol., 87, 277 - 305.
http://dx.doi.org/10.1016/j.jconhyd.2006.05.005

Delay, F., Ackerer, P. and Danquigny, C., 2005, Simulating solute transport in porous or fractured formations using random walk particle tracking: A review, J. Vadose. Zone., 4, 360 - 379.
http://dx.doi.org/10.2136/vzj2004.0125

Delay, F., Porel, G., Sardini, P. 2002, Modelling diffusion in a heterogeneous rock matrix with a time-domain lagrangian method and an inversion procedure, C.R. Geoscience., 334, 967 - 973.
http://dx.doi.org/10.1016/s1631-0713(02)01835-7

Delay, F. and Porel, G., 2003, Inverse modeling in the time domain for solving diffusion in heterogeneous rock matrix, Geophys. Res. lett., 30, 1147.
http://dx.doi.org/10.1029/2002gl016428

Luquot, L., Gouze, P., 2009, Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks, Chem. Geo., 265, 148 - 159.
http://dx.doi.org/10.1016/j.chemgeo.2009.03.028

Gouze, P., and Luquot, L., 2010, X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution, J. Contam. Hydrol., 120 -121 : 45 - 55.
http://dx.doi.org/10.1016/j.jconhyd.2010.07.004

Noiriel, C., Made´, B. and Gouze, B., 2007, Impact of coating deveopment on the hydraulic and transport properties in argillaceous limestone fracture, Water Resour. Res., 43, W09406.
http://dx.doi.org/10.1029/2006wr005379

Stauffer, D. and Aharony, A., 1994, Introduction to Percolation Theory, Taylor and Francis, London.
http://dx.doi.org/10.4324/9780203211595

McCarthy J.F., 1993, Continuous random time walks on random media, J. Phys. A: Math. Gen., 26 , 2495 - 2503.
http://dx.doi.org/10.1088/0305-4470/26/11/004

Dentz, M., Gouze, P., Ruzzian, A., Dweik, J. and Delay, F., 2012, Diffusion and trapping in heterogeneous media: An inhomogeneous continuous time random walk approach. Advances in Water Resources, Elsevier, 2012, 49, pp.13 - 22.
http://dx.doi.org/10.1016/j.advwatres.2012.07.015

Liu, H. H., Zhang, Y. Q., Zhou, Q. and Molz, F. J., 2007, An interpretation of potential scale dependence of the effective matrix diffusion coefficient, J. Contam. Hydrol., 90 (1 - 2), 41 - 57.
http://dx.doi.org/10.1016/j.jconhyd.2006.09.006


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize