SiC Schottky Diodes Forward Bias Electrical Behavior with Temperature and Under a Low Applied Magnetic Field


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


A study of Silicon Carbide Schottky diodes forward electrical behavior with temperature and under a low applied magnetic field was undertaken. Investigations involved four samples, two CSD01060 power diodes and two CD01060 medium power diodes. Silicon carbide is a promising material that has been recently used to manufacture electronic components operating at high power, high voltage, high frequency and high temperature. Among components made from silicon carbide, Schottky diodes are very important. They can withstand reverse voltages higher than 1200V and currents of 20A or more. Through forward I-V characteristics with and without applied magnetic field in temperature range from 100K to 300K with 50K steps, values of threshold voltage, ideality factor n and saturation current of four samples were determined. Temperature evolution of determined parameters is in relation with established theory while magnetic field effect appears only at low thermionic injection. Values of ideality factor are very close to 1 showing that current transport is diffusion dominated and there is no oxide layer at metal semiconductor interface. At low voltage, I-V characteristics indicate the presence of active deep defects in semiconductor band structure. High injection measurements at high temperatures confirmed results found at low injection and for low temperatures. Calculated series resistance shows good quality of devices and consistency of our results with literature.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Silicon Carbide; Schottky Diode; I-V Characteristics; Magnetic Field; Ideality Factor

Full Text:

PDF


References


Tairov Y.M. and Willander M.(1997): High Temperature Electronics. Edited by M. Willander and Hartnagel. Published by Chapman&Hall, London.ISBN 0412625105

Singh R . and Richmond J.: SiC Power Schottky Diodes in Power Factor Correction Circuits. www.cree.com/ftp/pub/CPWR.AN01.pdf

Chalabi, D., Chalabi, Z., Saidane, A., Mimouni, S., Ketata, M., Reverse I-V Behaviour of SiC Schottky Diodes Under Various Temperatures and Magnetic Fields, (2013) International Review of Physics (IREPHY), 7 (1), pp. 100-107..

Schoen K.J.,. Woodal J.M,. Cooper Jr J.A., and Mellach M.R. (1998)’’ Design consideration and experimental analysis of high voltage SiC Schottky barrier rectifiers.’’ IEEE Transaction on electron Devices 45 July . 155-1604.
http://dx.doi.org/10.1109/16.701494

R. Becharef, Z.Souar, G. Bassou, Comparison between MIM and Schottky Diodes for Use in High Frequencies, (2010) International Review of Physics (IREPHY), 4 (6), pp. 285-289.

Sochacki M., Szmidt J., Bakowski M. and Werbowy A..(2002). Influence of annealing on reverse current of 4H-SiC Schottky diodes. Diamond and Related Materials 11 1263-1267
http://dx.doi.org/10.1016/s0925-9635(01)00580-5

Ferrero S., Giorgis F., Pirri C.F., Mandracci P., Ricciardi C., Scaltrito L., Sgorlon C., Richieri G. And Merlin L. (18-19 Mach 2002).Processes and properties of 4H-SiC based Schottky diodes. Proceedings of the II National Meeting on Silicon Carbide, Parma,
http://dx.doi.org/10.4028/www.scientific.net/msf.433-436.455

Scaltrito L, Porro S, Giorgis F., Mandracci P., Cocuzza M. Pirri C.F., et all Correlation between defects and electrical properties of 4H-SiC based Schottky diodes. Materials Science Forum, in press. (www2.polito.it/ricerca/thinfilm/Papers/MoP3_21.pdf)
http://dx.doi.org/10.4028/www.scientific.net/msf.433-436.455

Khemka V., Patel R., Chow T.P., and Gutmann R.J.(1999). ‘Design considerations and experimental analysis for silicon carbide power rectifers’. Solid-State Electronics 43 1945-1962
http://dx.doi.org/10.1016/s0038-1101(99)00155-0

Zhang Q. And Sudarshan T.S. (2001). ‘ Latéral current spreading in SiC Schottky diodes using metal overlap edge termination’. Solid State Electronic 45 .1850.
http://dx.doi.org/10.1016/s0038-1101(01)00191-5

Wang S.R and Liu Z.L. (2002) ‘ Studies of 6H-SiC devices’. Current Applied physics 2 393-399.
http://dx.doi.org/10.1016/s1567-1739(02)00147-5

RECTIFIER CSD1060. Cree.com

Abdelaoui M., Idrissi-Benzohra M. , Joubert E., Benzohra M., Olivie F., KetataM.. (2003)’ Magnetic susceptibility of P_N junctions in correlation with the nature of silicon substrate: crystalline or pre-amorphised’.Materials Science and Engineering B102 370_375
http://dx.doi.org/10.1016/s0921-5107(02)00623-2

SZE S.M. (1981) Physics of Semiconductor Devises. John Wiley & Sons ISBN: 04109837X.

Milnes A.G. and Feneht D.L. (1972). Heterojunctions Metal-Semiconductors Junctions Academic. Press NewYork and London.

Rhoderick E.H. (fev 1972) Metal Semiconductor Contact. IEE Proc. 129 n°1. P 1

Yang Wu C. (1982). Interfaciall layer thermionic diffusion theory for the Schottky barrier diodes. J.Applied Phy. 53 n° 8 p.5947
http://dx.doi.org/10.1063/1.331384

Crowel C.R. , SZE S.M. (1966) Solid State Electronic 9 p.1035.

S. M. Abo-Dahab, R. A. Mohamed, A. M. Abd-Alla, Magnetic Field and Relaxation Times Effects on the Propagation of Thermoelastic Waves from Isothermal or Insulated Boundaries of a Half Space, (2011) International Review of Physics (IREPHY), 5 (6), pp. 389-401.

Shannon J.M (1977):Solid State electronic .20, p.869.
http://dx.doi.org/10.1016/0038-1101(77)90176-9

Kim J., Ren J.F., Baca A.G. , Chung G.Y. and , Pearton S.J.’(2003) thermal Stability of WSiX Schottky contact on n-type 4H-SiC’ Solid State Electronics. 47 P 1345-1350
http://dx.doi.org/10.1016/s0038-1101(03)00069-8

Abdelaoui M., Idrissi-Benzohra M., Joubert E., Benzohra M., Olivié F and Ketata M. (2002). ‘Magnetic susceptibility of P+N junctions in correlation with the nature of the silicon substrate: crystalline or preamorphized», European Materials research Society Meeting (E-MRS 2002), Strasbourg, France,
http://dx.doi.org/10.1016/s0921-5107(02)00623-2

Abdelaoui M., Idrissi-Benzohra M., Mehor H., Benzohra M, Olivie F. (2003) Electrical characterizations of preamorphized junctions under LF magnetic field’. Microelectronics Journal 34 1059–1066
http://dx.doi.org/10.1016/j.mejo.2003.09.008

S. M. Razavi, Ali A. Orouji, Seyed Ebrahim Hosseini, Hamid Amini Moghadam, DC and RF Characteristics of SiC MESFETs with Different Channel Doping Concentrations under the Gate, (2011) International Review of Physics (IREPHY), 5 (3), pp. 116-120.

CHALABI D. (1985). Thèse docteur ingénieur INPT Toulouse (France)

Atindal S., Karadeniz S., Tugluoglu N., Tataroglu. A. (2003) ‘The role of interface states and series resistance on the I-V and C-V characteristics in Al/SnO2/P-Si Schottky diodes’. Solid State Electronics 47 p.1847-1854.
http://dx.doi.org/10.1016/s0038-1101(03)00182-5

Uslua H., SAltındala S., Aydemira U., Dökmeb I., Afandiyevac I.M. (2010): The interface states and series resistance effects on the forward and reverse bias I–V, C–V and G/ω-V characteristics of Al–TiW–Pd2Si/n-Si Schottky barrier diodes: Journal of Alloys and Compounds 503 P:96–102
http://dx.doi.org/10.1016/j.jallcom.2010.04.210

Chunga G.S, Kima K.S., Yakuphanoglub F., (2010) Electrical characterization of Au/3C-SiC/n-Si/Al Schottky junction: Journal of Alloys and Compounds 507 508–512.
http://dx.doi.org/10.1016/j.jallcom.2010.08.004


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize