Analysis of π± – 12C Elastic Scattering Data at 100 MeV Using Inverse Scattering Theory and Klein-Gordon Equation


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Our optical potential, determined from available phase shifts within the framework of inverse scattering theory using the full Klein-Gordon equation, is used successfully in this study. This potential is inserted in the radial part of Klein-Gordon equation which is solved numerically using Numerouv integration method. The logarithmic derivatives of the inner and outer solutions are matched at the nuclear surface and phase shifts are obtained for each partial wave. As such, scattering amplitudes and cross sections can easily be calculated. The reliability and success of our potential are examined by accounting for the measured elastic differential cross sections, especially at very large angles, and reaction cross sections for π± – 12C at 100 MeV. The use of full Klein-Gordon equation, and not the truncated one, is very important in explaining large and very large angle data.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Pion-Nucleus Potential; Elastic Scattering; Inverse Scattering Theory; Numerical Integration

Full Text:

PDF


References


K. S. Krane, Introductory nuclear physics, first ed.(Wiley John & Sons, New York, 1988).
http://dx.doi.org/10.1002/sce.3730350125

T. S. Lee and R. Redwine, Pion-Nucleus Interactions, Ann. Rev. Nucl. Part. Sci. 52 (2002), 23-63.

Z. F. Shehadeh, Analysis of Low-Energy Elastic Scattering Data, Proceedings of the 4th Meeting of the Saudi Physical Society (2008), 24-30.

L. S. Kisslinger, Scattering of Mesons by Light Nuclei, Phys. Rev. 98 (1955), 761-765.
http://dx.doi.org/10.1103/physrev.98.761

M. B. Johnson and G. R. Satchler, Characteristics of Local Pion-Nucleus Potentials That Are Equivalent to Kisslinger-Type Potentials, Ann. Phys. (New York) 248 (1996), 134-169.
http://dx.doi.org/10.1006/aphy.1996.0054

S. A. Khallaf and A. A. Ebrahim, Analysis of π± –Nucleus Elastic Scattering Using a Local Potential, Phys. Rev. C 62 (2000), 024603-1-8.
http://dx.doi.org/10.1103/physrevc.62.024603

S. W. Hong and B. T. Kim, Phenomenological Local Potentials for π- – 12C scattering from 120 to 766 MeV, J. Phys. G: Nucl. Part. Phys.25 (1999), 1065-1078.
http://dx.doi.org/10.1088/0954-3899/25/5/310

R. J. McLeod, Klein-Gordon versus Relativistic Schrӧdinger Equations in Pion-Nucleus Scattering, Phys. Rev. C 49 (1994), 3346-3349.
http://dx.doi.org/10.1103/physrevc.49.3346

M. Nuseirat, M. A. K. Lodhi and H. E. R. Gibbs, Pion-Nucleus Scattering, Phys. Rev. C 58 (1998), 314-319.
http://dx.doi.org/10.1103/physrevc.58.314

Md. Akhter, S. Sultana, H. Sen Gupta and R. Petersen, Local Optical Model Studies of Pion-Nucleus Scattering, J. Phys. G.: Nucl. Part. Phys. 27 (2001) 755-771.
http://dx.doi.org/10.1088/0954-3899/27/4/302

L. Begum, S. Haque, W. Nahar, S. N. Rahman and Md. A. Rahman, On Pion-Nucleus Scattering (Paper-I), the Abdussalam International Center for Theoretical Physics IC/2003/40. Available at http://www.ictp.trieste.it/˜pub_off

Z. F. Shehadeh, M. Sabra and F. B. Malik, Pion-40Ca Potential using Inverse Scattering Formalism and the Klein-Gordon Equation, Condensed Matter Theories 18 (2003), 339-346.

G. Satchler, Local Potential Model for Pion-Nucleus Scattering and π+/π- Excitation Ratios, Nucl. Phys. A 540 (1992), 533-576.
http://dx.doi.org/10.1016/0375-9474(92)90173-h

Dumbrajs, J. Frohlich, U. Klein and H. G. Schlaile, Analysis of π± -12C Elastic Scattering, Phys. Rev. C 29 (1984), 581-591.
http://dx.doi.org/10.1103/physrevc.29.581

L.E. Antonuk, D. Bovet, E. Bovet, J.-P. Egger, J.-F. Germond, F. Goetz, P. Gretillat, C. Lunke and E. Schwarz, Elastic and Inelastic Pion Scattering on 12C and 13C at 100 MeV, Nucl. Phys. A 420 (1984), 435-460.
http://dx.doi.org/10.1016/0375-9474(84)90667-5

D. B. Ion, M. L. D. Ion, R. Ion-Mihai and T. Angelescu, New Experimental Evidences for Optimal Resonances in Pion-Nucleus Scattering, Rom. J. Phys. 55 (2010) 296-308.

Z. F. Shehadeh, Analysis of Pion-40Ca Elastic Scattering Data using the Klein-Gordon Equation, Int. J. Mod. Phys. E 18 (2009), 1615-1627.
http://dx.doi.org/10.1142/s0218301309012823

Z. F. Shehadeh, Non-relativistic Nucleus-Nucleus and Relativistic Pion-Nucleus Interactions, Ph.D. dissertation, Dept. Phys., Southern Illinois Univ. Carbondale, ILL, 1995.

Z. F. Shehadeh, M. Alam and F. B. Malik, Inverse Scattering Theory at a Fixed Energy for the Klein-Gordon Equation, Phys. Rev. C 59 (1999), 826-831.
http://dx.doi.org/10.1103/physrevc.59.826

G.R. Satchler, Direct Nuclear Reactions, first ed. (Claredon Press, Oxford, 1983).

B. Block and F. B. Malik, Effect of the Pauli Principle in 16O-16O Elastic Scattering, Phys. Rev. Lett. 19 (1967) 239-243.
http://dx.doi.org/10.1103/physrevlett.19.239

R. M. Wieland, G. R. Stokstad, G. R. Satchler and L. D. Rickertsen, Analysis of 12C-12C Scattering and the Depth of the Real Potential, Phys. Rev. Lett. 37 (1976) 1458-1461.
http://dx.doi.org/10.1103/physrevlett.37.1458

R. G. Stokstad, R. M. Wieland, G. R. Satchler, C. B. Fulmer, D. C. Hensley, S. Raman, L.D. Rickertsen, A. H. Snell and P. H. Stelson, Elastic and Inelastic Scattering of 12C by 12C from Ec.m.=35-63 MeV, Phys. Rev. C. 20 (1979), 655-669.
http://dx.doi.org/10.1103/physrevc.20.655

K. Stricker, A Study of the Pion-Nucleus Optical Potential, Ph.D. dissertation, Dept. Phys., Michigan State University, Michigan, MI, 1979.

Z. F. Shehadeh, Analysis of Elastically Scattered Charged Pions from 40Ca in the Intermediate-Energy Region, JAAUBAS 14 (2013), 32-37.
http://dx.doi.org/10.1016/j.jaubas.2013.03.003

Z. F. Shehadeh, Analysis of Elastically Scattered Charged Pions from Calcium Isotopes and the 48Ca-54Fe Isotone at 180 MeV, Turk. J Phys. 37 (2013), 190-197.
http://dx.doi.org/10.3906/fiz-1207-5

Z. F. Shehadeh, Analysis of π± – 12C Elastic Scattering and Reaction Cross-Section Data Below, Atop and Above the Δ–Resonance, JMP 5 (2014) 341-352.
http://dx.doi.org/10.4236/jmp.2014.56044

E. V. Zemlyanaya, K. V. Lukyanov, V. K. Lukyanov and K. M. Hanna, The K+-Nucleus Microscopic Optical Potential and Calculations of the Corresponding Differential Elastic and Total Reaction Cross Sections, Proceedings of the 7th Conference on Nuclear and Particle Physics, Sharm El—Sheikh, Egypt (2009), 119-127.
http://dx.doi.org/10.1134/s1063778810080181

H. M. Pilkuhn, Relativistic Particle Physics, first ed. (Springer-Verlag, New York, 1979).
http://dx.doi.org/10.1007/978-3-642-88079-7

M. M. Alam and F. B. Malik, An Inverse Scattering Method for Identical Particles, Nucl. Phys. A 524 (1991), 88-94.
http://dx.doi.org/10.1016/0375-9474(91)90017-z

Z. F. Shehadeh, Analysis of Low-Energy π- – 12C Elastic Scattering Data, JMP (Accepted, 2014).

S. A. E. Khallaf and A. A. Ebrahim, Different Methods of Pion-Nucleus Optical Potentials, American Journal of Applied Sciences 2 (2005), 932-938.
http://dx.doi.org/10.3844/ajassp.2005.932.938


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize