Structural, Dielectric and Complex Impedance Studies of BZT


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The sintering effect on transition parameters and dielectric characteristics of Ba(Zr0.05Ti0.95)O3 (BZT-5%) ceramics prepared by the sol-gel reaction technique was studied. With X-ray diffraction we studied the influences of sintering time on grain size and structural parameters. The phase transitions and dielectric properties were investigated by measuring the real part of dielectric constant ε’ and the loss factor tanδ as a function of temperature (30 - 200 °C) at long range of frequency (1kHz - 2MHz). Two different conduction mechanisms were obtained by fitting the complex impedance data to Cole-Cole equation. The grain and grain boundary resistivity were found to follow the Arrhenius law associated with activation energies: Ea2 below and above Tm for the bulk conduction; and Ea1 below Tm for the grain boundary conduction. Relaxation times extracted using imaginary part of complex dielectric constant ε” (ω) were also found to follow the Arrhenius law and showed an anomaly around the phase transition temperature. This results exhibit that bulk conduction is more important than grain boundary conduction. The frequency dependence of resistance and conductivity was interpreted in terms of the non-Debye relaxation.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Ferroelectric; Conductivity; Complex Impedance; BZT; Cole-Cole Equation; Arrhenius Law

Full Text:

PDF


References


W. Cai, C.L. Fu, Z.B. Lin, X.L. Deng, Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics, Ceramics International 37 (2011) 3643–3650.
http://dx.doi.org/10.1016/j.ceramint.2011.06.024

K. Niesz, T. Ould-Ely, H. Tsukamoto, D.E. Morse, Engineering grain size and electrical properties of donor-doped barium titanate ceramics, Ceramics International 37 (2011) 303–311.
http://dx.doi.org/10.1016/j.ceramint.2010.08.040

J.Z. Xin, C.W. Leung, H.L.W. Chan, Composition dependence of structural and optical properties of Ba(Zrx,Ti1_x)O3 thin films grown on MgO substrates by pulsed laser deposition, Thin Solid Films 519 (2011) 6313– 6318.
http://dx.doi.org/10.1016/j.tsf.2011.04.007

S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1-x)O3 (x =0 - 0.12) ceramics, Scripta Materialia 61 (2009) 68–71.
http://dx.doi.org/10.1016/j.scriptamat.2009.03.016

I.K. Jeong, C.Y. Park, J.S. Ahn, S. Park, D.J. Kim, Ferroelectric–relaxor crossover in Ba(Ti1-xZrx)O3studied using neutron total scattering measurements and reverse Monte Carlo modeling, Physical Review B 81 (2010) 214119.
http://dx.doi.org/10.1103/physrevb.81.214119

T.M. Doan, L. Lu, M.O. Lai, Thickness dependence of structure, tunable and pyroelectric properties of laser-ablated Ba(Zr0.25Ti0.75)O3 thin films, Journal of Physics D: Applied Physics 43 (2010) 035402.
http://dx.doi.org/10.1088/0022-3727/43/3/035402

X.Y. Chen, W. Cai, C.L. Fu, H.Q. Chen, Q. Zhang, Synthesis and morphology of Ba(Zr0.20Ti0.80)O3 powders obtained by sol–gel method, Journal of Sol–Gel Science and Technology 57 (2011) 149–156.
http://dx.doi.org/10.1007/s10971-010-2335-1

N. Binhayeeniyi, P. Sukvisut, C. Thanachayanont, S. Muensit, Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature, Materials Letters 64 (2010) 305–308.
http://dx.doi.org/10.1016/j.matlet.2009.10.069

L.N. Gao, J.W. Zhai, X. Yao, Influence of MgO and ZrO2 buffer layers on dielectric properties of Ba(Zr0.20Ti0.80)O3 thin films prepared by sol–gel processing, Applied Surface Science 257 (2011) 3836–3839.
http://dx.doi.org/10.1016/j.apsusc.2010.10.132

X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, R. Perez, Phase transition characteristics and dielectric properties of rareearth(La, Pr, Nd, Gd) doped Ba(Zr0.09Ti0.91)O3 ceramics, Materials Chemistry and Physics 125 (2011) 493–499.
http://dx.doi.org/10.1016/j.matchemphys.2010.10.027

S.B. Reddy, K.P. Rao, M.S.R. Rao, Influence of A-site Gd doping on themicro-structure and dielectric properties of Ba(Zr0.1Ti0.9)O3 ceramics, Journal of Alloys and Compounds 509 (2011) 1266–1270.
http://dx.doi.org/10.1016/j.jallcom.2010.09.211

W. Cai, J.C. Gao, C.L. Fu, L.W. Tang, Dielectric properties, microstructure and diffuse transition of Ni-doped Ba(Zr0.2Ti0.8)O3 ceramics, Journal of Alloys and Compounds 487 (2009) 668–674.
http://dx.doi.org/10.1016/j.jallcom.2009.08.034

T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, T.P. Sinha, E. Longo, Structural and dielectric relaxor properties of yttrium-doped Ba(Zr0.25Ti0.75)O3 ceramics, Materials Chemistry and Physics 121 (2010) 147–153.
http://dx.doi.org/10.1016/j.matchemphys.2010.01.008

T.A. Jain, K.Z. Fung, S. Hsiao, J. Chan, Effects of BaO–SiO2 glass particle size on the microstructures and dielectric properties of Mn-doped Ba(Ti,Zr)O3 ceramics, Journal of the European Ceramic Society 30 (2010)1469–1476.
http://dx.doi.org/10.1016/j.jeurceramsoc.2009.11.006

P. Jarupoom, K. Pengpat, G. Rujijanagul, Enhanced piezoelectric properties and lowered sintering temperature of Ba(Zr0.07Ti0.93)O3 by B2O3addition, Current Applied Physics 10 (2010) 557–560.
http://dx.doi.org/10.1016/j.cap.2009.07.020

F. Moura, A.Z. Simo˜es, C.A. Paskocimas, M.A. Zaghete, J.A. Varela, E. Longo, Temperature dependence on the electrical properties of Ba(Ti0.90Zr0.10)O3, ceramics, Materials Chemistry and Physics 123 (2010) 772–775.
http://dx.doi.org/10.1016/j.matchemphys.2010.05.058

S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, Ferroelectric relaxor behavior and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics, Journal of Physics D: Applied Physics 42(2009) 065413.
http://dx.doi.org/10.1088/0022-3727/42/6/065413

P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan, C.L. Wang, Piezoelectric properties and stabilities of CuO-modified Ba(Ti,Zr)O3 ceramics, Applied Physics Letters 94 (2009) 032902.
http://dx.doi.org/10.1063/1.3072347

L.N. Gao, J.W. Zhai, Y.W. Zhang, X. Yao, Influence of rare-earth addition on dielectric properties and relaxor behavior of barium zirconium titanate thin films, Journal of Applied Physics 107 (2010) 064105.
http://dx.doi.org/10.1063/1.3330753

A. Aoujgal, W.A. Gharbi, A. Outzourhit, H. Ahamdane, A. Ammar, A.Tachafine, J.C. Carru, Relaxor behavior in (Ba1-3x/2Bix)(ZryTi1-y)O3 ceramics, Ceramics International 37 (2011) 2069–2074.
http://dx.doi.org/10.1016/j.ceramint.2011.04.124

W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang Piezoelectric, Dielectric properties of (Ba1-xCax)(Ti0.95Zr0.05)O3 lead-free ceramics, Journal of the American Ceramic Society 93 (2010) 2942–2944.
http://dx.doi.org/10.1111/j.1551-2916.2010.03907.x

Landolt, and Bornstein, New Series, Grout III, Vol.16a (Ferroelectrics: oxides). Berlin, Heidelberg, New York; Spinger, 1981.

D.F.K. Hennings, B. Schreinemacher and H. Schreinemacher, J. European Ceramic Society 13 (1994) 81-88
http://dx.doi.org/10.1016/0955-2219(94)90062-0

Sciau. Ph, Calvarin. G, and Ravez. J., Solid State Communication 113(2000) 77-82
http://dx.doi.org/10.1016/s0038-1098(99)00445-7

A. Elbasset, T. Lamcharfi, F. Abdi S. Sayouri. Effect of heat treatment time on the dielectric properties of BST, J. Advances in Physics Theories and Applications. 30 (2014) 2225-0638.

Yahyaoui, M., Limame, K., Jaber, B., Elghazouali, A., Sayouri, S., Synthesis and Structural Studies of Sol Gel Processed Nanopowders of Lead Doped Y2Ti2O7 Pyrochlores, (2013) International Review of Physics (IREPHY), 7 (6), pp. 393-399.

Elbasset, A., Abdi, F., Lamcharfi, T., Sayouri, S., Aillerie, M., Synthesis and Characterization of Strontium Doped Barium Titanate Ceramics, (2013) International Review of Physics (IREPHY), 7 (3), pp. 287-293.

H.P. Klug and L.E. Alexander, Crystallite Size Determination from Line Broadening. (Wiley, New York, 1954), p. 491.

E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram. 10 (2003) 165.

V. Buscaglia, S. Tripathi, V. Petkov, M. Dapiaggi, M. Deluca, A. Gajovi, Y. Ren. J. Phys.: Condens. Matter 26 (2014) 065901- 0659013
http://dx.doi.org/10.1088/0953-8984/26/6/065901

J. Yang, P. Liu, X. Bian, H. Jing, Y. Wang, Y. Zhang, Y. Wu, W. Song, Materials Science and Engineering B 176 (2011) 260–265.
http://dx.doi.org/10.1016/j.mseb.2010.12.007

Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 105 (2009) 084112.
http://dx.doi.org/10.1063/1.3115409

L.H. Omari, S. Sayouri, Optical Materials 36 (2014) 118–122.
http://dx.doi.org/10.1016/j.optmat.2013.04.032

T. Teranishi, T. Hoshina, T. Tsurumi, Materials Science and Engineering B 161 (2009) 55–60.
http://dx.doi.org/10.1016/j.mseb.2008.11.039

Hyun M. Jang, Tae-Yong Kim, Il-Woo Park, Solid State Commun. 127 (2003)645–648.
http://dx.doi.org/10.1016/s0038-1098(03)00564-7

M. Matsuura, K. Hirota, P.M. Gehring, Z.-G. Ye,W. Chen, G. Shirane, Phys. Rev. B74 (2006) 144107.

D.K. Pradhan, B.K. Samantray, R.N.P. Choudhary, Mater. Sci. Engg.B. 116(2005) 7.

O. Raymonds, R. Font, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97 (2005)084108.
http://dx.doi.org/10.1063/1.1870100

D.C. Sinclair, A.R. West, J. Appl. Phys. 66 (1989) 3850.
http://dx.doi.org/10.1063/1.344049

L. H. Omari, S. Sayouri, ISRN Materials Science, Volume 2013, Article ID 231302.
http://dx.doi.org/10.1155/2013/231302

Z. Yu, C.Ang, R. Guo, A.S. Bhalla Dielectric properties of Ba(Ti1 − xZrx)O3 solid solutions. Materials Letters 61 (2007) 326–329
http://dx.doi.org/10.1016/j.matlet.2006.04.098

F. González Garcia, C. R. Foschini, J. A. Varela, E. L. F. Moura, A. Z. Simões. Structural and functional characterization of barium zirconium titanate / epoxy composites. Processing and Application of Ceramics 5 (2011) 205–213
http://dx.doi.org/10.2298/pac1104205g

ArchanaShukla, R.N.P.Choudhary,A.K.Thakur,D.K.Pradhan, Physica B 405 (2010) 99–106
http://dx.doi.org/10.1016/j.physb.2009.08.075

S.P. Jiang, J.G. Love, S.P.S. Badwal, in: J. Nowotny, C.C. Sorrell (Eds.), ElectricalProperties of Oxide Materials, Key Engineering Materials, Vol. 125-126, TransTech Publications, Switzerland, 1997, p. 81.

M.A. Alim, J. Am. Ceram. Soc. 72 (1989) 28.

V. M. Gurevich, Electric Conductivity of Ferroelectrics, Moskva, New York, NY, USA, 1969.

S. Miga and K. Wojcik, “Investigation of the diffuse phase transition in PLZT x/65/35 ceramics, x=7−10,” Ferroelectrics, vol. 100, no. 1, pp. 167–173, 1987.
http://dx.doi.org/10.1080/00150198908007911

W. D. Kingery, Introduction to Ceramics, Wiley, New York, NY, USA, 1960.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize