Tuning Effect in Particle Masses, Nuclear Data and Standard Model Parameters


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Recent determination of the scalar boson mass and results of the analysis of nuclear excitations collected in the new nuclear data compilation confirmed  the presence of a common tuning effect in particle masses, in parameters of the Standard Model and  in nuclear data. This tuning effect includes the distinguished character of estimates of constituent quark masses and  the presence of long-range correlations in nucleon masses and nuclear data with the parameters close  to (or rational to) the electromagnetic mass splitting of the electron and the nucleon. One of SM-parameters of the tuning effect is the QED radiative correction. Its value coincides with the ratios between masses of both leptons and masses of the constituent quark and Z-boson. It means that the lepton ratio (L=mµ/me=MZ/Mq with Mq=441 MeV) has the universal character.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Hadron Structure; Particle Masses; Nuclear Data

Full Text:

PDF


References


S. I. Sukhoruchkin, Int.. Rev. Phys. (IREPHY) 2 (2008), 239.

S. I .Sukhoruchkin, J. Phys.: Conf. Ser.381, 012076 (2012).

S. I .Sukhoruchkin, Nucl. Phys. B Proc. Suppl. 234, 241 (2013).

S. I .Sukhoruchkin, 3rd Symp. on Prospects in the Physics of Discrete Symmetries, J. Phys. Conf. Ser.(2013).

S. I .Sukhoruchkin et al., Proc. Int. Seminar on Neutron-Nucl Interact. ISINN-19 (JINR publ. E3-2012-30, 2012, pp.284, 296, 308); ISINN-20 (JINR publ. E3-2013).

ATLAS collab., Phys. Lett. B 710 (2012), 49.

Particle Data Group: J. Phys. G 33 (2006), 1; M. Suzuki, 535.

Y. Nambu, Nucl.Phys.A, 629 (1998), 3c; Progr. Theor. Phys. 7, (1952), 595.

S. I. Sukhoruchkin, Stat. Prop. Nuclei (Pl. Press, 1972, p. 215).

R. Sternheimer, Phys. Rev. 136 (1964), 1364 170, (1968,) 1267

P. Kropotkin, Field and Matter, (Moscow Univ. 1971, p. 106).

T. Takabayasi, Progr. Theor.Phys, 29 (1963), 472; 30, 272.

C. Itoh et al.Phys. Rev. D 40 (1989), 3660.

L. Glozman, Nucl.Phys. A 629 (1990), 121c.

V.Belokurov, D.Shirkov, The Theory of Particle Interactions (AIP, New York, 1991.)

S. I. Sukhoruchkin, Z. N. Soroko, Landolt--Boernstein New Series, Springer 2009, vol. I/24. Ed. H.Schopper.

K. Ideno, Proc. Int, Conf. Neutrons in Research and Industry (SPIE Proc. Ser. 2867 USA, 1997, p.398).

M. Ohkubo, M. Mizumoto, Y. Nakajima, JAERI-M-93-012, 1993; M. Ohkubo, Phys. Rev. C 87 (2013), 014608.

G. Audi, et al, Nucl. Phys. A 729 (2003), 337 (AME-2003).; G.Audi et al., Chin.Phys.C 36 (2012,)1157 (AME 2012).

S. I. Sukhoruchkin, Z. N. Soroko, Landolt--Boernstein New Series, Springer 2009, vol. I/22A,B. Ed. H.Schopper

S. I. Sukhoruchkin et al., Int. J. Mod. Phys. E 20 (2011), 906.

R. Frosch, Nuovo Cim. 104 (1991), 913.

S. Sukhoruchkin, Proc. Int. Symposium on Symmetry Methods in Physics, JINR E2-94-347, 528 (1994); Proc .40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p.146 (1990).

S. Ting, CERN-PPE/93-34, 1993.

C. Detraz, Nucl. Phys. A 583 (1995), 3.

T.Otsuka, T Suzuku, Y.Utsino, Nucl. Phys. A 805 (2008), 127c.

S. I. Sukhoruchkin, Z. N. Soroko, Landolt--Boernstein New Series, Springer, 2012 vols. I/25A,B,C,D,E. Ed.H.Schopper

S. I .Sukhoruchkin et al., Proc. Int. Seminar on Neutron-Nucl Interact. ISINN-17 (JINR publ. E3-2012-30, 2012, pp.198, 209).

S. I .Sukhoruchkin et al., Proc. ISINN-21 (2013, to be publ.).

R. Feynman, QED-Strange Theory of Light and Matter. (Princenton Univ. Press, 1986).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize