### The Nonlinear Dose Response of OTOR-Model Thermoluminescence Glow Peaks in Case of Temperature-Dependent Frequency Factor

^{(*)}

*Corresponding author*

**DOI's assignment:**

*the author of the article can submit here a request for assignment of a DOI number to this resource!*

**Cost of the service: euros 10,00 (for a DOI)**

#### Abstract

The work in this paper deals with studies on the nonlinear dose response of the OTOR-model glow peaks when the frequency factor S is temperature dependent parameter. The present work takes into account the possibility of competition between trap filling and trap emptying during irradiation, the possibility of trap emptying during storage period after the end of irradiation and the trap emptying during thermal excitation, respectively of the OTOR-model glow peaks. It is found that the amount of the nonlinearity effect depends on the relative magnitudes of the trapping parameters involved, the time of irradiating the samples, the storage time after the end of irradiation, the total dose imparted, the time of imparting these doses and on the different values of the parameter a. *Copyright © 2013 Praise Worthy Prize - All rights reserved.*

#### Keywords

#### Full Text:

PDF#### References

R. Chen and Y. Kirsh, Analysis of Thermally Stimulated Processes, (Pergamon Press, Oxford), p. 26, 161, 1981.

Y.S. Horowitz (ed.), Thermoluminescence and Thermoluminescent Dosimetry, vol. 1-3 (CRC Press, Boca Raton, Florida), p.49, 1984

S.W.S. McKeever, Thermoluminescence of Solids, (Cambridge Univ. Press), p. 49, 1985

C. Furetta, Handbook of Thermoluminescence, (World Scientific Publishing, Singapore), (2003)

V. Pagonis, G. Kitis and C. Furetta, Numerical and Practical Exercises in Thermoluminescence, (Chapter 3), (Springer, Berlin), 2006

J.T. Randall and M.H.F. Wilkins, Phosphorescence and Electron Traps: I. The Study of Trap Distributions, Proc. Roy. Soc. Lond., A, 184 (1945) 366-389.

G.F.J. Garlick and A. F. Gibson, The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors, Proc. Phys. Soc., 60 (1948) 574-590.

M.S. Rasheedy, On the general order kinetics of thermoluminescence glow peak, J. Phys.: Cond. Mat., 5 (1993) 633-636.

A. Halperin and A.A. Braner, Evaluation of Thermal Activation Energies from Glow Curves, Phys. Rev., 117, 408, (1960) 408- 415

C M Sunta, R N Kulkarni, T M Piters, W E Feria Ayta and S Watanabe, General order kinetics of thermoluminescence–a comparison with physical models, J. Phys. D: Appl. Phys. 31 (1998) 2074-2081 (1998) .

C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci and S. Watanabe, General order and mixed order fits of thermoluminescence glow curves—a comparison, Radiat. Meas., 35 (2002) 47-57.

A. Triolo, M. Brai, A. Bartolotta and M. Marrale, Glow curve analysis of TLD-100H irradiated with radiation of different LET: Comparison between two theoretical method, Nucl. Instr. and Meth., A, 560 (2006) 413-417.

I. A. Weinstein and E. A. Popko, Genetic search for model parameters in fitting thermoluminescence Curves, Technical Phys. Letters, 32 (2006) 534-537.

M.S. Rasheedy and A.I. Abd-Elmageed, The validity of the two heating rates method to obtain the trapping parameters from general-order thermoluminescence glow peaks, J. Phys. and Chem. of Solids 68 (2007) 243-248.

I.A.Weinstein, E.A. Popko, Evolutionary approach in the simulation of thermoluminescence kinetics, Radiat. Meas., 42 (2007) 735-738.

J. Marcazzo, M. Santiago, F. Spano, M. Lester, F. Ortega, P. Molina and E. Caselli, Effect of the interaction among traps on the shape of thermo-luminescence glow curves, J. Lumin., 126 (2007) 245-250

I.A. Weinstein and E.A. Popko, The simulation of TL processes in a-Al2O3 using different ratios between parameters of trapping and luminescent centers, J. Lumin. 122–123 (2007) 377-380.

I.A.Weinstein, Eugeny and A. Popko, Genetic synthesizing of band schemes for thermo-luminescence in dosimetric crystals, Radiat. Meas., 43 (2008) 218-221.

J. Marcazzَo, P. Molina, F. Ortega, M. Santiago, F. Spano, N. Khaidukov and E. Caselli, Analysis of the main thermoluminescent peak of the glow curve of K2YF5:Pr3+ crystals employing a model of interactive traps, Radiat. Meas., 43 (2008) 208- 212.

R. Chen, V. Pagonis and J.L. Lawless, A new look at the linear-modulated optically stimulated luminescence (LM-OSL) as a tool for dating and dosimetry, Radiat. Meas., 44 (2009) 344-350.

J.L. Lawless, R. Chen and V. Pagonis, Sublinear dose dependence of thermoluminescence and optically stimulated luminescence prior to the approach to saturation level, Radiat. Meas., 44 (2009) 606-610

R. Chen, V. Pagonis and J.L. Lawless, On the initial-occupancy dependence of some luminescence phenomena under the one-trap-one-recombination-center (OTOR) model, Radiat. Meas., 45 (2010) 147-150.

R. Chen, V. Pagonis and J.L. Lawless, Nonlinear dose dependence of TL and LM-OSL within the one trap-one center model, Radiat. Meas., 45 (2010) 277-280.

K.S. Chung, C.Y. Park, J.I. Lee and J.L. Kim, Development of a new curve deconvolution algorithm for optically stimulated luminescence, Radiat. Meas., 45 (2010) 320-322.

P. N. Keating, Thermally Stimulated Emission and Conductivity Peaks in the Case of Temperature Dependent Trapping Cross-Sections, Proc. Phys. Soc., 78 (1961) 1408 – 1415.

R. J. Fleming, Activation energies and temperature dependent frequency factors in thermally stimulated luminescence, J. Phys. D: Appl. Phys. 23 (1990) 950- 954.

A.N. Yazici and Z. Ozturk, The effect of temperature dependent frequency factor on the evaluated trapping parameters of TSL glow Curves, Tr. J. of Physics, 22 (1998) 1-8

A.N. Yazici, Determination of temperature dependent frequency factor constant from TL glow curves, Tr. J. Phys., 22 (1998).415-419.

W.S. Singh, M. Bhattacharya, S.D. Singh and P.S. Mazumdar, Activation energies and temperature dependent frequency factors in thermo-luminescence recorded with hyperbolic heating scheme, Phys. Status Solidi A, 179 (2000) 265- 273.

W. S. Singh, M. Bhattacharya, S. Dorendrajit Singh, and P.S. Mazumdar, On temperature-dependent frequency factor in thermoluminescence measured with a hyperbolic heating profile, Can. J. Phys., 79 (2001) 1133-1139.

V.K. Jain, S.P. Kathuria and A.K. Ganguly, Supralinearity and sensitisation in LiF TLD phosphor, J. Phys. C 7, 3810 (1974).3810-3816.

A.R. Lakshmanan, R.C. Bhatt and S.J. Supe, Mechanism of non linearity in the response characteristics of thermoluminescent dosimeters, J. Phys. D 14 (1981) 1683-1706.

B. Chandra, R.C. Bhatt and S.j. Supe, High level γ-dosimetry using CaSO4:Dy phosphor with high Dy-concentration, Int. J. Appl, Radiat. Isotop., 32, (1981) 553-558.

F.A. Hassan, thermoluminescence as a function of dose in natural calcium fluoride, Nucl. Instr. and Meth. B 12, 175 (1985) 175-180.

M.S. Rasheedy and A.M. Amry, The non-linear response as a function of irradiation, storage and thermal excitation of second order thermo-luminescence signal, Nucl. Instr. and Meth. A 350 (1994) 561-565.

J.R. Cameron, N. Suntharalingam and G.N. Kenney, Thermoluminescence Dosimetry" (Univ. of Wisconsin Press, Madison), 1968.

A.F. McKinlay, Thermoluminescence dosimetry, (Adam Hilger, Bristol), 1981.

L. Daling, Z. Chunxiang, D. Zouping and L. Guozhen, Thermoluminescence characteristics of MgSO4:Dy,Mn phosphor, Radiat. Meas., 30 (1999) 59-63

E. Vittone, C. Manfredotti, F. Fizzotti, A. L. Giudice, P. Polesello and V. Ralchenko, Thermo-luminescence in CVD diamond films: application to radiation dosimetry, Diamond and Related Materials 8 (1999) 1234-1239.

D.N. Souza, M.E.G. Valerio, J.F. de Lima and L.V.E. Caldas, Dosimetric properties of natural brazilian topaz: A thermally stimulated exo-eletronic emission and thermoluminescence study, Nucl. Instr. And Meth. B 166-167 (2000) 209-214

L. Duggan, M. Budzanowski, K. Przegietka, N. Reitsema, J. Wong and T. Kron, The light sensitivity of thermoluminescent materials: LiF:Mg,Cu,P, LiF:Mg,Ti and Al2O3:C, Radiat. Meas., 32 (2000) 335-342.

P. Olko, P. Bilski, M. Budzanowski, A. Molokanov, E. Ochab and M.P.R. Waligorski, Supralinearity of peak 4 and 5 in thermoluminescent lithium fluoride MTS-N (LiF :Mg; Ti) detectors at different Mg and Ti concentration, Radiat. Meas., 33 (2001) 807-812.

C. Furetta, F. Santopietro, C. Sanipoli and G. Kitis, Thermoluminescent (TL) properties of the perovskite KMgF3 activated by Ce and Er impurities, Appl. Radiat. and Isotop. 55, (2001) 533-542

S. Mazzocchi, M. Bruzzi, M. Bucciolini, G. Cuttone, S. Pini, M.G. Sabini and S. Sciortino, Thermoluminescence characterisation of chemical vapour deposited diamond films, Nucl. Instr. and Meth. A 476 (2002) 713-716.

E.F. Mische and S.W. Mckeever, Mechanism of supralinearity in lithium fluorite Thermolumine-scence Dosemeters, Radiation Prot. Dosim. 29, 159 (1989) 159-175.

A.J.J. Santos, J.F. de Lima and M.E.G. Valerio, Phototransferred thermoluminescence of quartz, Radiat. Meas., 33 (2001) 427-430

E.G. Yukihara and E. Okuno, On the thermoluminescent properties and behaviour of Brazilian topaz, Nucl. Instr. and Meth. B 141 (1998) 514-517.

V.K. Mathur, A.C. Lewandowski, N.A. Guardala and J.L. Price, High dose measurements using thermoluminescence of CaSO4:Dy, Radiat. Meas., 30 (1999) 735-738.

M.M. Elkholy, Thermoluminescence for rare-earths doped tellurite glasses Thermoluminescence for rare-earths doped tellurite glasses, Materials Chem. and Phys., 77 (2002).321-330.

P.G. Benny and B.C. Bhatt, High-level gamma dosimetry using photo transferred thermo-luminescence in quartz, Appl. Radiat. and Isotop. 56 (2002).891-894.

R. Chen, D.J. Huntley and G.W. Berger, Analysis of thermoluminescence data gominated by second-order kinetics, Phys. Stat. Solidi A 79 (1983) 251- 261.

### Refbacks

- There are currently no refbacks.

Please send any question about this web site to info@praiseworthyprize.com**Copyright © 2005-2024**** Praise Worthy Prize**