Effect of Secondary Electron Emission on Argon Glow Discharge Characteristics


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The present work develops and tests a computationally model of a DC glow discharge in low pressure argon gas of collisionless electron plasma. In this work, we have chosen the fluid model described by a series of partial differential equations representing all the physical phenomena that occur in a landfill. Using these differential equations, the spatial distribution of electrons, electron mean energy and electric field distribution in the inter-electrode space of DC plasma discharge have been calculated by the finite differences method according to the exponential scheme. Argon is used as the working gas to investigate all the physical processes occurring in the glow discharge. We especially investigate the effect of the secondary emission of electrons from the electrode surface. We have performed a classification of the value of the secondary emission coefficient γ and the model was validated using the value of γ according to plasma potential. The value of γ has been shown to affects electric field behavior in the plasma sheaths.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


DC Glow Discharge; Argon Plasma; Modeling; Secondary Emission Coefficient; Plasma Potential; Electric Field

Full Text:

PDF


References


P. Jelinek and R. Hrach: WDS'06 Proc. of Contributed Papers, Part III, p.198, 2006.

I. Denysenko, K. Ostrikov and P.P. Rutkevych: Comp. Mat. Sci. Vol. 30, p. 303, 2004.

A. Bouchikhi, A. Hamid , Through Solutions to the Moments of the Boltzmann Equation for DC Glow Discharge, (2008) International Review of Physics (IREPHY), 2 (4), pp. 196-203.

D. Guendouz, A. Hamid, A. Flitti, Second Order Fluid Model in One and two Dimensional of Glow Discharge in Argon, (2009) International Review of Physics (IREPHY), 3 (5), pp. 268-273.

S. M. Lee, Y. J. Hong, Y. S. Seo, F. Iza, G. C. Kim, and J. K. Lee: Comp. Phys. Comm, 2009.

I. Denysenko, K. Ostrikov, P.P. Rutkevych, S. Xu, Computational Materials Science 30, 303, 2004.

B. Zhenhua, X. Xiang, L. Yongxin, J. Xiangzhan, L. Wenqi, W. Younian, Plasma Science and Technology, Vol.13, No.2, Apr. 2011.

K.H. Schoenbach et al., Plasma Source Sci. Technol., 6(468), 1997.

R.H. Stark and K.H. Schoenbach, J. Appl. Phys. 85 2075. 1999

I. Richterova, Z. Nemecek, J. Pavlu , M. Beranek, J. Safrankova, Elsevier, Icarus 212, 367–372, (2011).

M. Beranek, I. Richterova, Z. Nemecek, J. Pavlu, and J. Safrankova, Eur. Phys. J. D 54, 299–304 (2009).

O. A. Streletskii, V. V. Khvostov, N. D. Novikov, M. B. Guseva, and A. F. Aleksandrov, Journal of Communications Technology and Electronics, Vol. 57, No. 4, pp. 424–428, 2012.

H.Hao, P. Liu, J.Tang, Q. Cai, S. Fan, Elsevier, C A R B ON 5 0 4 2 0 3 – 4 2 0 8, (2012).

Y.Motoyama, H. Matsuzaki, and H.Murakami Ieee Transactions On Electron Devices, vol. 48, N° 8, august 2001.

A. V. Phelps and Z. Lj. Petrovi´c, Plasma Sources Sci. Technol 8, R21. 1999.

M. Soji and M. Sato, J. Phys. D: A ppl.Phys. 32, 1640. 1999

H.B. Smith et al., Phys. Plasmas. 10, 875. 2003

A. Bogaerts, R. Gijbels, Spectrochimica Acta Part B. 57, 1071, 2002.

E. Gogolides, H.H. Sawin, J.Appl.Phys, 72: 3971, 1992

E. P. Hammond, K. Mahesh, and P. Moin, J.Comput. Phys. 176,402, 2002.

J. P. Boeuf, L. C. Pitchford, Phys. Rev. E,51: 1376, 1995

G. J. M. Hagelaar, F. J. Hoog and G. M. W. Kroesen, Phys. Rev.E 62(1) 1452 (2000)

M. Radmilovi´c-Radjenovi´c and Z. Lj. Petrovi´c, Europ. Phys. J. D 54, 445., 2009.

Heon Chang Kim, Yong Tae Sul, Member, IEEE, and Vasilios I. Manousiouthakis, IEEE Transactions On Plasma Science, vol. 32, no. 2, april 2004


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize