Using Petri Net Models for Regulation: Case of Assembly Process Mechanics

Lotfi Nabli(1*), Hedi Dhouibi(2)

(1) UR d’Automatique Traitement de Signal et Image (ATSI), D.Génie Electrique, L’Ecole Nationale d’Ingénioeurs de Monastir, Tunisia
(2) Laboratoire d’Automatique Génie Informatique et Signal (LAGIS), Ecole Centrale de Lille, France
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The indistinctness of the manufacturing processes makes that a parts cannot be realized in an absolutely exact way towards the specifications on the dimensions. It is thus necessary to assume that the effectively realized product has to belong in a very strict way to compatible intervals with a correct functioning of the parts. This paper presents an approach based on a new modelling tool: the Interval Constrained Petri Nets. This tool is introduced in order to extend some properties of p-time PN to non-temporal constraint. A robust command of a mechanical assembly process is presented as an application. This command will then have to maintain the specifications interval of parts in front of the variations.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Intervals of Tolerances; Interval Constrained Petri Nets; Robust Command; Production Rate

Full Text:

PDF


References


C. Varnier, Extension du Hoist Scheduling Problème Cyclique-Résolution base sur les contraintes disjonctives en Programmation Logique avec contraintes, Thèse de Doctorat de l’université de Franche-Comté, France, janvier 1996.

W. Khansa, J.P. Denat, S. Collart-Dutilleul, P-Time Petri Nets for Manufacturing Systems, Wodes.96, Edinburgh UK, August 19-21, pp. 94-102, 1996., International Workshop on Discret Event Systems.

Collart Dutilleul S., H. Dhouibi and E.Craye., Tolerance analysis approach with interval constrainted Petri nets, ESMc conference, Paris, pp. 265-272.

Jerbi N. S., Collart Dutilleul, E. Craye., and M. Benrejeb, Robust Control of Multi-product Job-shop in Repetitive Functioning Mode, IEEE Conference on Systems, Man, and Cybernetics (SMC’04), The Hague, Vol. 5, pp. 4917-4922, October 2004 Observation of Tolerant.

H. P. Hillion and J. M. Proth, Performance Evaluation of Job-shop Systems using Timed Event-Graphs, IEEE trans. on Automatic Control, vol. 34, n°1, janvier 1989.

Collart Dutilleul S., H. Dhouibi, E.Craye., Tolerance analysis approach with interval constrainted Petri nets, ESMc 2004 conference, Paris.

P. Yim, A. Lefort, and Hebrard, System Modelling with Hypernets, ETFA’96 IEEE Conférence, pp 37-47, Paris, Octobre 1996.

Collart Dutilleul S., H. Dhouibi and E.Craye, Internal Robustness of Discret Event System with interval constraints in repetitive functioning mode, ACS'2003 conference, Miedzyzdroje Poland, pp. 353-361.

H. Dhouibi, S. Collart Dutilleul, E. Craye and L. Nabli, Computing Intervals Constrainted Petri Nets: a tobacco manufacturing application, IMACS conference, Paris, pp. 440-446.

C. A. Petri, Communikation mit Automaten, Bonn: Institut fur instrumentelle Mathematik, Schriften des IIM Nr. 3, 1962. Also, English translation, Communication with Automata. New York: Griffiss Air Force Base., Tech. Rep. RADCTR-65-377, vol. 1, Suppl. 1, 1966.

C. Ramchandani, Analysis of Asynchronous Concurrent Systems by Timed Petri Nets, Thèse de Doctorat, MIT Cambriddge, 1974.

J. Sifakis. « Use of Petri Nets for Performance Evaluation, Measuring Modeling and evaluating Computer Systems”, E Bleiner and E. Gelenbe editors, Hollande, 1977, pp. 75-93.

P. Merlin, A Study of the Recoverability of Computer system». Thèse de Doctorat, Université de Californie, 1974.

Khansa W. ; Aygalinc P.; Denat J.-P., Structural analysis of p-time Petri nets, CESA'96 IMACS Multiconference : computational engineering in systems applications, Lille, France.

M. Diaz, Vérification et mise en oeuvre des réseaux de Petri ». Paris, Hermès Sciences Publication, 2003.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize