Numerical Simulation of Thermal Behavior Airflow Facades Building in Arid Zone


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


A building is a complex environment due to its geometry and its many stresses caused by fluctuations. Therefore the design of buildings and more specifically its thermal performance is to assist the air flow modeling of physical phenomena. In this work, we study numerically the influence of external stress (temperature) on the flow of air inside the room through a solid interface (front). The system considered consists of two circles, an internal environment that represents the local and external environment that represents the environment of the building separated by a wall. The equations governing the transient natural convection in both media, the heat transfer by convection and heat conduction in the solid wall, are discretized by the finite volume method and are solved using simple algorithm. The convective flow is governed by different control parameters, namely the Rayleigh number (Ra) and the amplitude and the period of the excitation temperature


Copyright © Praise Worthy Prize - All rights reserved.

Keywords


Numerical Simulation; Natural Convection; Conduction; Facade; Building; Finite Volume; SIMPLER

Full Text:

PDF


References


N.Morel et E.Gnansounou, Energétique du bâtiment (section génie civil) 2008.

Larson D.W., Viskanta R., Transient combined laminar free convection and radiation in a rectangular enclosure, J. Fluid Mech. 78 (1976) 65-85.6
http://dx.doi.org/10.1017/s0022112076002334

Lage J.L, Lim J.S., Bejan A., Natural convection with radiation in a cavity with open top end, J. Heat Trans. Th. ASME 114 (1992) 479-486.
http://dx.doi.org/10.1115/1.2911374

Koutsoheras W., Charters W.W.S., Natural convection phenomena in inclined cells with finites side-walls: a numerical solution, Energy 19 (1977) 433-438.
http://dx.doi.org/10.1016/0038-092x(77)90098-6

Kim D.M., Viskanta R., Study of the effects of wall conductance on natural convection in differentially oriented square cavities, J. Fluid Mech. 144 (1984) 153-176.
http://dx.doi.org/10.1017/s0022112084001555

Kim D.M., Viskanta R., effects of wall heat conduction on natural convection heat transfer in a square enclosure, J. Heat Trans.-Th. ASME. 107 (1985) 139-146.
http://dx.doi.org/10.1115/1.3247370

Tsan-Hui Hsu, So-Yenn Tsai, Natural convection of micropolar fluids in Two-Dimensional enclosure with a conductive partition, number. Heat tr. 28 (1995) 69-83.
http://dx.doi.org/10.1080/10407789508913733

Balvanz J.L et Kueh T.H., Effect of conduction and radiation on natural convection in a vertical slot with uniform heat generation on the heated wall, ASME HTD,8, 1980. pp 55-62.

Lauriat G., A numerical study of a thermal insulation enclosure: influence of the radiative heat transfer, ASME HTD, 8, 1980. pp 63-71.

Kim D.M and Viskanta R., Effect of wall conduction and radiation on natural convection in rectangular cavity, number. Heat tr. 7 (1987) 449-470.
http://dx.doi.org/10.1080/01495728408961835

Dehghan A.A Behnia M., Combined natural convection-conduction and radiation heat transfer in a discretely heated open cavity, J.Heat trans ASME 18 (1996) 56-64.
http://dx.doi.org/10.1115/1.2824068

Del Coz Díaz JJ, García Nieto PJ, Suárez Sierra JL, Betegón Biempica C (2008a). Nonlinear thermal optimization of external light concrete multiholed brick walls by the finite element method. International Journal of Heat and Mass Transfer, 51: 1530 − 1541.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.07.029

Del Coz Díaz JJ, García Nieto PJ, Suárez Sierra JL, Peñuelas Sánchez I (2008b). Non-linear thermal optimization and design improvement of a new internal light concrete multi-holed brick walls by FEM. Applied Thermal Engineering, 28: 1090 − 1100.
http://dx.doi.org/10.1016/j.applthermaleng.2007.06.023

Stephonson DG, Mitalas GP (1971). Calculation of heat conduction transfer function for multi-layer slabs. ASHRAE Transaction, 77(2): 117 126.

Ceylan HT, Myers GE (1980). Long-time solutions to heat conduction transient with time-dependent inputs. ASME Journal of Heat Transfer, 102: 115 − 120.
http://dx.doi.org/10.1115/1.3244221

Abdelbaki A. et Zrikem Z., Simulation numérique des transferts thermiques couples à travers les parois alvéolaires des batiments. Int. J. Therm. Sci. (1999) 38, 719-730.
http://dx.doi.org/10.1016/s1290-0729(99)80065-9

El Biyaâli A, Roux JJ, Yezou R, Ayaichia H (1994). Application de la réduction de modèles aux singularités thermiques de bâtiments. Revue Général de Thermique, 394: 571 − 579. (in French)

Seem JE (1987). Modeling in heat transfer in buildings. PhD Thesis, University of Wisconsin, Madison, USA.

Patankar Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. New York (1980).
http://dx.doi.org/10.1002/cite.330530323

De Vahl Davis Natural convection of air in square cavity a Bench mark numerical solution. Int.j. number methods fluids 3.249-264(1983)
http://dx.doi.org/10.1002/fld.1650030305

Le Breton P, Caltagirone JP, Arquis E. Natural convection in square cavity with thin porous layers on its vertical walls. J Heat Transfer 1991;113:892-8.
http://dx.doi.org/10.1115/1.2911218

Axel Bellivier Modélisation numérique de la thermo-aéraulique du bâtiment: des modèles CFD `a une approche hybride volumes finis / zonale Thèse de Magister. Université de la rochelle (2004)

Dixit and Badu: Natural convection of air in square cavity. Revue scientifique (2006).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize