Finite Element Model for Hyperelastic Axisymmetric Shells


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


A finite element formulation is presented for the nonlinear analysis of axisymmetric thin shells in presence of two types of nonlinearities: geometric (large displacements and rotations) and material. As example of nonlinear material behavior, incompressible hyperelastic model in terms of principal stretches or invariants is considered. The finite element formulation is based on the cylindrical description. The element is validated by comparing the present results with the numerical and experimental solutions available in the literature.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Axisymmetric Shells; Finite Element Method; Hyperelstic Material; Nonlinear Behavior

Full Text:

PDF


References


Zienkiewicz O.C., Bauer I., Morgan K., Onate E., ‘a simple and efficient element for axisymmetric shells’, int.j.numer.methods eng., U.K, 1977.

Delpak R., ‘Role of the curved parametric element in linear analysis of thin rotational shells’, Ph.D. Thesis, Department of civil engineering and building, The polytechnic of Wales, 1975.

Batoz J.L., Dhatt G., ‘Modélisation des structures par éléments fini’, volume 3, coques, éditions HERMES, Paris, Mars 1992.

Bhatia R. S., Sekhon G.S., Generation of exact stiffness matrix for a conical shell, Computers and Structures, 70, 425-435, 1999.

Sekhon G.S., Bhatia R. S.,Generation of exact stiffness matrix for a spherical shell element, Computers and Structures, 74, 335-349, 2000.

Simo J. C., and Taylor R. L., Quasi-incompressible finite elasticity in principal stretches: Continuum basis and numerical algorithms, Computer Methods in Applied Mechanics and Engineering, 85, 273-310, 1991.

Gruttmann F., Taylor R. L., Theory and Finite Element Formulation of Rubber-like Membrane Shells Using Principal Stretches, International Journal for Numerical Methods in Engineering, 35, 1111-1126, 1992.

Wriggers P., Taylor R. L., ‘a fully non-linear axisymmetrical membrane element for rubber-like materials’, Eng. Comput., 7, 303-310, 1990.

Eberlein R., Wriggers P., Taylor R. L., ‘A fully non-linear axisymmetrical quasi-Kirchhoff-type shell element for rubber-like materials’ International Journal for Numerical Methods in Engineering, 36, 4027-4043, 1993.

Wagner W., ‘A finite element model for non-linear shells of revolution with finite rotations’, International Journal for Numerical Methods in Engineering, 29, 1455-1471 (1990).

Hong T., Teng J.G., ‘Non-linear analysis of shells of revolution under arbitrary loads’, Hong Kong, Computers and Structures, 80, 1547-1568, 2002.

Dammak F., Regaieg A., Kallel Kammoun I., Dhiab A. Modélisation de la loi de comportement hyperélastique transversalement isotrope des élastomères, Revue Européenne de Mécanique Numérique, V 16 n°1, 103-126, 2007.

ABAQUS, Theory and Users Manual, Version Pawtucket, Rhode Island: Hibbit, Karlsson and Sorensen Inc; 1997.

Taber L. A., ‘Large deflection of a fluid-filled spherical shell under a point load‘, J. Appl. Mesh. ASME, 49, 121-128, 1982.

Holzapfel G. A., Non linear solid mechanics. Wiley, 2000.

Hughes T. J. R., Carnoy E., ‘Nonlinear finite element shell formulation accounting for large membrane strains’, Comput. Methods Appl. Mech. Eng., 39, 69-82 (1983).

Nyssen C., ‘Modélisation par éléments finis du comportement non linéaire de structures aérospatiales’, Thesis, University of Liege, Belgium, 1979.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize