An Accurate Numerical Method to Predict Fluid Flow in a Shear Driven Cavity


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In this paper, the vorticity transport equation is solved to predict the fluid flow in a two-dimensional, shear driven cavity for a wide range of Reynolds numbers and aspect ratio. The advection term in the governing equation is discretised by the constraint interpolated profile method. First, the code is validated for a one-dimensional wave equation and then the results of the flow structure are presented. Several features of the flow, such as the dynamics of the central vortex, the formation of the corner vortices are predicted and compared with the previous findings from other researchers. We found that the vortices structures are significantly dependent on the value of the aspect ratio of the cavity and the dimensionless Reynolds numbers. The predicted results are also shown to be consistent with the experimental study
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Advection Equation; CIP Method; Vorticity Transport Equation; Shear Driven Cavity

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize