Two-Dimensional Theoretical and Numerical Approach of Pollutant Transport in the Lowest Layers of the Atmosphere

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


The main objective of the present paper is to establish a two-dimensional theoretical and numerical model for the atmospheric pollution by considering the advection-diffusion-reaction process in a turbulent flow (k-( model) of a Newtonian fluid. A finite volume method is used to solve the equations and to determine the temperature, T, the pollutant concentration profile, c and the fluid velocities u, w, respectively in Cartesian coordinates (ex, ez). This study, considered as an important step in modeling atmospheric pollution, may also be fit to other industrial applications
Copyright © 2013 Praise Worthy Prize - All rights reserved.


Turbulent Flow; Finite Volume Method; Newtonian Fluid; Atmospheric Pollution; Advection-Diffusion-Reaction Process

Full Text:



E.J. Spee, P.M. de Zeeuw, J. G. Verwer, J.G. Blom, W.Hundsdorfer, “A numerical study for global atmospheric transport-chemistry problems”, Mathematics and Computers in simulation 48, pp.177-204, 1998.

J.G. Verwer, J.G. Blom,“ On the coupled solution of diffusion and chemistry in air pollution models,” Report NM-R 3509, July Amesterdam, 1995.

D. Lanser et J.G. Verwer, “Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling,” CWI report MAS-R9805,1998.

J. G. Blom, W. M. Lioen et J.G. Verwer,“HPCN and air quality modeling in P. Sloot, M. Bubak et B. Hertzberger”, eds. Springer Proceeding series LNCS 1401, pp. 141-150, 1998.

E.A. Spiegel et G Veronis, “On the Boussinesq approximation for a compressible fluid”, Astrophys. J., 131, pp-442-447, 1960.

K.L.Colder, “In clarification of the caption of shallow layer thermal convection for compressible fluid Based on the Boussinesq approximation, Q.J.R.”, Meteorol. Soc, 94, pp.88-92, 1968.

J.M. Seinfeld et S.N. Pandis, “Atmospheric chemistry and physics from air pollution to climate charge”, (Wiley, New –York, 1998).

G. J. Mac Rae, W.R. Goodin et J.M. Seinfeld, “Numerical solution of the atmospheric diffusion equation for chemically reacting flows”, J. Comput., Phys.45, pp.1-42, 1982.

R.B. Rood, “Numerical advection algorithms and their role in atmospheric transport and chemistry models,” Rev.Geoph.25, pp. 71-100, 1987.

A. Sandu, “Numerical aspects of air quality modelling,” Phd. Thesis Univ. Of Iowa, august 1997.

H. K. Versteeg et W. Malalasekera, “An introduction to computational fluid dynamics”. The finite volume method, (1rt edition, Longman Group Ltd, England, 1995).

H.A. Panofsky & J.A. Dutton, “Atmospheric turbulence”, (Wiley, New York, 1984).

T.E Graedel et P.J. Crutzen, “Atmosphere, climate and change”, (scientific American Library, Freeman and company, New York-Oxford, 1995).

J. G. Verwer, W. H. Hundsdorfer et J. G. Blom,“Numerical time integration for air pollution models”, report MAS-R9 825, invited paper for the international conference on air pollution modelling and simulation A DM5 98, oct. 26-29 ; France, 1998.

J.G. Blom, W.M. Lioen et J.G. Verwer, “HPCN and air quality modeling,” In P. Sploot, M. Bubac et B. Hertzberger, Eds, Springer Proceeding Series LNCS 1401, pp. 1414-150, 1998Report MAS-R9801, January, Amesterdam, 1998.

J.G. Verwer, J.G. Blom, W. Hundsdorfer, “An implicit – explicit approach for atmospheric transport. Chemistry problems”, Applied Numerical Mathematics 20, pp.191-209, 1996.

S.V. Patankar, “Numerical heat transfer and fluid flow”, Hemisphere Publishing corporation, Taylor and Francis group, New York, 1980.

S.V. Patankar, D. B. Spalding “A calculation procedure for heat, Mass and momentum transfer in three dimensional parabolic flows”, Int., J. Heat Mass Transfer, vol., 15, pp.1787,1972.

C.B. Vreugdenhil et B. Koren, “Numerical methods for advection -diffusion- problems,” notes, numerical fluid Mechanics, vol. 45, Vieweg, Braunschweig, 1993.

Ch. Kessler, J.G. Blom et J.G. Verwer, “Parting a 3D model for the transport of reactive air polluants to the parallel machine,” T. 3D, Report NM-R9515, CWI, Amesterdam, 1995.

W. Hundsdorfer and E.J. Spee, “An efficient horizontal advection scheme for modelling of global transport of constituents”, Mon. Wea Rev. 123, pp. 3554-3564, 1995.;2

Schlichting H., 1979, Boundary-layer theory, 7eme (ed. Mac Graw-Hill, New york, pp.817).

N. Buil, Modélisation tridimensionnelle du transport de polluants dans les écoulements a surface libre, Thèse de Doctorat Nationale, Lyon, France, 1999.

Launder B.E. et Splanding D.B., The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.

Viollet P.L., on the numerical modeling of stratified flows, Physical Processes in Esturies (eds. Dronkers and van Leussen) Springer verlay, pp. 257-277, 1988.

K.Gueraoui, A.Mrabti, M.Taibi, B.Bahrar, G.Zeggwagh et Y.Haddad, « Etude théorique bidimensionnelle du problème de la pollution atmosphérique » 1er Colloque International de Rhéologie, Taght 18-20, 2003.

K.Gueraoui, M.Taibi, I.Aberdane, G.Zeggwagh et Y.Haddad, « Etude numérique et théorique de la pollution atmosphérique » 7ème Congrés de Mécanique, El Jadida 2005.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2024 Praise Worthy Prize