A Comparison of Type-1 and Type-2 Fuzzy Logic Controllers in Robotics: a Review


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Most real world applications face high levels of uncertainties that can affect the operations of such applications. Hence, there is a need to develop different approaches that can handle the available uncertainties and reduce their effects on the given application. To date, Type-1 Fuzzy Logic Controllers (FLCs) have been applied with great success to many different real world applications. The traditional type-1 FLC which uses crisp type-1 fuzzy sets cannot handle high levels of uncertainties appropriately. Nevertheless it has been shown that a type-2 FLC using type-2 fuzzy sets can handle such uncertainties better and thus produce a better performance. As such, type-2 FLCs are considered to have the potential to overcome the limitations of type-1 FLCs and produce a new generation of fuzzy controllers with improved performance for many applications which require handling high levels of uncertainty. This paper will briefly introduce the interval type-2 FLC and its benefits. We will also present briefly some of the type-2 FLC real world applications.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Fuzzy Logic Controller; Fuzzy Type-1; Fuzzy Type-2

Full Text:

PDF


References


"Robotics". Oxford Dictionaries. Retrieved 4 February 2011.

Nocks, Lisa (2007). The robot: the life story of a technology. Westport, CT: Greenwood Publishing Group.

"Robotics: About the Exhibition". The Tech Museum of Innovation. Retrieved 2008-09-15.

D.Wu. W.Tan (2006). A simplified type-2 fuzzy logic controller for real time control .
http://dx.doi.org/10.1016/s0019-0578(07)60228-6

J.Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New directions, Upper Saddle River, NJ: Prentice-Hall, 2001.

E.Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Machine Studies, vol. 7, no. 1, pp. 1–13, 1975.
http://dx.doi.org/10.1016/s0020-7373(75)80002-2

E. Mamdani, “Fuzzy control—a misconception of theory and application,” IEEE Expert, vol. 9, no. 4, pp. 27–28, Aug. 1994.

H. Wu and J. Mendel, “Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, vol. 10, pp. 622–639, Oct. 2002.
http://dx.doi.org/10.1109/tfuzz.2002.803496

H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Transactions on Fuzzy Systems, vol. 12, pp. 524–539, Aug. 2004.
http://dx.doi.org/10.1109/tfuzz.2004.832538

J. Mendel and R. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems,vol. 10, pp. 117–127, Apr. 2002.
http://dx.doi.org/10.1109/91.995115

N. Karnik and J. Mendel, “An introduction to type-2 fuzzy logic systems,” USC report, http://sipi.usc.edu/~mendel/report, Oct. 1998.

D. Wu and W. Tan, “Type-2 FLS modeling capability analysis,” Proceeding of the 2005, IEEE International Conference on Fuzzy Systems, pp. 242–247, Reno, USA, May 2005.
http://dx.doi.org/10.1109/fuzzy.2005.1452400

S.Roberto, C.Oscar, M.Patricia, Rodríguez-Díaz, Antonio and M.Oscar, ” Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic”, vol. 177, issue. 10, pp. 2023-2048, 2007.
http://dx.doi.org/10.1016/j.ins.2006.10.004

P.Birkin, J.Garibaldi, “A comparison of Type-1 and Type-2 fuzzy controllers in a micro-robot context,” pp. 1857-1862, 2009.
http://dx.doi.org/10.1109/fuzzy.2009.5277321

O.Linda, S.Member, M.Manic, “Comparative Analysis of Type-1 and Type-2 Fuzzy Control in Context of Learning Behaviors for Mobile Robotics,” pp. 1086-1092, 2010.
http://dx.doi.org/10.1109/iecon.2010.5675521

O.Linda, S.Member, M.manic, “Uncertainty-Robust Design of Interval Type-2 Fuzzy Logic Controller for Delta Parallel Robot,” vol. 7, pp. 661-670, 2011.
http://dx.doi.org/10.1109/tii.2011.2166786

P.Melin, L.Astudillo, O.Castillo, “Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm,” vol. 4, 2013.
http://dx.doi.org/10.1016/j.eswa.2012.12.032

R. Sepúlveda, O. Castillo, P. Melin, A. Diaz, and O. Montiel, “Handling Uncertainty in Controllers Using Type-2 Fuzzy Logic,” Proceeding of the 2005 IEEE International Conference on Fuzzy Systems, pp. 248–253, Reno, USA, July 2005.
http://dx.doi.org/10.1109/fuzzy.2005.1452401

C. Lynch, H. Hagras, and V. Callaghan, “Embedded type-2 FLC for real-time speed control of marine and traction diesel engines,” Proceeding of the 2005 IEEE International Conference on Fuzzy Systems, pp. 347–352, Reno, USA, May 2005.
http://dx.doi.org/10.1109/fuzzy.2005.1452418

C. Lynch, H. Hagras, and V. Callaghan, “Using uncertainty bounds in the design of an embedded real-time type-2 neuro-fuzzy speed Controller for marine diesel engines,” Proceeding of the 2006 IEEE International Conference on Fuzzy Systems, pp. 7217–7224, Vancouver, Canada, July 2006.
http://dx.doi.org/10.1109/fuzzy.2006.1681899

S. Coupland, M. Gongora, R. John, and K. Wills, “A comparative study of fuzzy logic controllers for autonomous robots,” Proceedings of the 2006 Information Processing and Management of Uncertainty in Knowledge-based Systems conference, pp. 1332–1339, Paris, France, July 2006.

N.R. Ca´zarez, S. Ca´rdenas, L. Aguilar, O. Castillo, Lyapunov stability on type-2 fuzzy logic control, in: IEEE-CIS International Seminar on Computational Intelligence, Me´xico Distrito Federal, Me´xico, October 17–18, 2005, pp. 1–10.

B.J. Choi, S.W. Kwak, B.K. Kim, Design and stability analysis of singleinput fuzzy logic controller, IEEE Trans. Fuzzy Syst. 30 (2000) 303–309.
http://dx.doi.org/10.1109/3477.836378

L.A. Zadeh, “From computing with numbers to computing with words—from manipulation of measure-ments to manipulation of perceptions,” IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, vol. 45, pp. 105–119, 1999.
http://dx.doi.org/10.1109/81.739259

J. L. Castro, “Fuzzy logic controllers are universal approximators,” IEEE Trans. Syst., Man, Cybern., vol. 25, no. 4, pp. 629–635, Apr. 1995.
http://dx.doi.org/10.1109/21.370193

H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 524–539, Aug. 2004.
http://dx.doi.org/10.1109/tfuzz.2004.832538

T. Fukuda and N. Kubota, “Computational intelligence in robotics and mechatronics,” in Proc. 23rd Int. Conf. Industrial Electronics, Control, and Instrumentation, vol. 11, 1997, pp. 1517–1528.
http://dx.doi.org/10.1109/iecon.1997.664909

T. Fukao, H. Nakagawa, N. Adachi, Adaptive Tracking Control of a NonHolonomic Mobile Robot, IEEE Trans. On Robotics and Automation, Vol. 16, No. 5, pp. 609-615, October 2000.
http://dx.doi.org/10.1109/70.880812

Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct. 2000.
http://dx.doi.org/10.1109/91.873577

Martinez, A., E. Tunstel and M. Jamshidi ÒFuzzy Logic Based Collision Avoidance for a Mobile RobotÓ, Robotica, Vol. 12 No. 6, pp. 521- 527, 1994.
http://dx.doi.org/10.1017/s0263574700016866

M. Melgarejo, A. Garcio, and C Pena-Reyes. Pro-Two: A Hardware Based Platform For Real Time Type-2 Fuzzy Inference. In Proc. FUZZ-IEEE 2004, pages 977 – 982, Budapest, Hungary, July 2004.
http://dx.doi.org/10.1109/fuzzy.2004.1375540

S. Coupland and R. John. Geometric Type- 1 and Type-2 Fuzzy Logic Systems. IEEE Transaction on Fuzzy Systems, 2005. In refereeing process.
http://dx.doi.org/10.1109/tfuzz.2006.889764

T.H Lee, “A practical Fuzzy Logic Controller for the Path Tracking of Wheeled Mobile Robots”, IEEE Control Systems Magazine, pp. 60-65, Apr. 2003.
http://dx.doi.org/10.1109/mcs.2003.1188772

D. Gu and H. Hu, “Evolving Fuzzy Logic Controllers for Sony Legged Robots”, RoboCup 2001 Lecture notes in artificial intelligence, Vol. 2377, pp. 356-361, 2000.
http://dx.doi.org/10.1007/3-540-45603-1_43

Liang, Q., and Mendel, J.M.: ‘Interval type-2 logic systems: theory and design’, IEEE Trans. Fuzzy Syst., 2000, 8, (5), pp. 535–550
http://dx.doi.org/10.1109/91.873577

H. Hagras, “Type-2 FLCs: A new generation of fuzzy controllers,” IEEE Comput. Intell. Mag., vol. 2, no. 1, pp. 30–43, Feb. 2007.
http://dx.doi.org/10.1109/mci.2007.357192

J.Aisbett, J. Rickard, andD.Morgenthaler, “Type-2 fuzzy sets as functions on spaces,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 841–844, Aug. 2010.
http://dx.doi.org/10.1109/tfuzz.2010.2046176

S. Coupland, M. Gongora, R. John, K. Willis, “A comparative study of fuzzy logic controllers for autonomous robots,” in IPMU 2006, Paris, France, pp. 1332-1339, 2008.

J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, S. Rojas, “A type-2 fuzzy logic controller for tracking mobile objects in the context of robotic soccer games,” in Proc. IEEE Intl’ Conf. on Fuzzy Systems, 2005.
http://dx.doi.org/10.1109/fuzzy.2005.1452420

W. Pedrycz (Ed.), Fuzzy Modelling: Paradigms and Practice, Kluwer Academic Press, Dordrecht, 1996.

Cordon, O., Herrera, F., Gomide, F., Hoffmann, F., and Magdalena, L., Genetic fuzzy systems:New developments. Fuzzy Sets Syst. 141,1–163 2004.
http://dx.doi.org/10.1016/s0165-0114(03)00110-6

Wu, D. R. and Tan, W. W., A type-2 fuzzy logic controller for the liquid-level process. Proceedings of the IEEE International Conference on Fuzzy systems 2, 953–958 2004.
http://dx.doi.org/10.1109/fuzzy.2004.1375536

M. Dorigo, M. Birattari, T. Stützle, Ant colony optimization, IEEE Computational Intelligence Magazine (November) (2006) 28–39.
http://dx.doi.org/10.1109/ci-m.2006.248054

D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control. New York: Springer-Verlag, 1993.
http://dx.doi.org/10.1007/978-3-662-11131-4_1

F. C. Lin,W. Tong, and T.-H. S. Li, “An experimental study on tracking control of two autonomous mobile robots,” in Proc. IEEE IECON’97, 1997, pp. 1311–1316.
http://dx.doi.org/10.1109/iecon.1997.668502

O. Kaynak, K. Erbatur, and M. Ertugrul, “The fusion of computationally intelligent methodologies and sliding-mode control- A survey,” IEEE Trans. Ind. Electron., vol. 48, pp. 4–17, Jan. 2001.
http://dx.doi.org/10.1109/41.904539

T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst. Man, Cybern., vol. 15, no. 1, pp. 116-132, 1985.
http://dx.doi.org/10.1109/tsmc.1985.6313399

A. Green, J.Z. Sasiadek, Heuristic design of a fuzzy controller for a flexible robot, IEEE Transactions on Control Systems Technology 14 (2) (2006) 293–300.
http://dx.doi.org/10.1109/tcst.2005.860517

S.X. Yang, H. Li, M.Q.H. Meng, P.X. Liu, An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance, IEEE Transactions on Fuzzy Systems 12 (4) (2004) 436–446.
http://dx.doi.org/10.1109/tfuzz.2004.832524

P. Dassanayake, K. Watanabe, K. Kiguchi, K. Izumi, Robot manipulator task control with obstacle avoidance using fuzzy behavior-based strategy, Journal of Intelligent and Fuzzy Systems 10 (3–4) (2001) 139–158.

M.-Y. Chen, H.-W. Tzeng, Y.-C. Chen, S.-C. Chen, The application of fuzzy theory for the control of weld line positions in injection-molded part, ISA Transactions 47 (1) (2008) 119–126.
http://dx.doi.org/10.1016/j.isatra.2007.07.001

I. Harmati, K. Skrzypczyk, Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework, Robotics and Autonomous Systems 57 (1) (2009) 75–86
http://dx.doi.org/10.1016/j.robot.2008.02.004

S.G. Tzafestas, K.M. Deliparaschos, G.P. Moustris, Fuzzy logic path tracking control for autonomous non-holonomic mobile robots: design of system on a chip, Robotics and Autonomous Systems 58 (8) (2010) 1017–1027.
http://dx.doi.org/10.1016/j.robot.2010.03.014

R.-E. Precup, S. Preitl, I.J. Rudas, M.L. Tomescu, J.K. Tar, Design and experiments for a class of fuzzy controlled servo systems, IEEE/ASME Transactions on Mechatronics 13 (1) (2008) 22–35.
http://dx.doi.org/10.1109/tmech.2008.915816

P. Dassanayake, K. Watanabe, K. Kiguchi, K. Izumi, Robot manipulator task control with obstacle avoidance using fuzzy behavior-based strategy, Journal of Intelligent and Fuzzy Systems 10 (3–4) (2001) 139–158.

] I. Baturone, F.J. Moreno-Velo, S. Sanchez-Solano, A. Ollero, Automatic design of fuzzy controllers for car-like autonomous robots, IEEE Transactions on Fuzzy Systems 12 (4) (2004) 447–465.
http://dx.doi.org/10.1109/tfuzz.2004.832532

J. Lin, R.-J. Lian, Stability indices for a self-organizing fuzzy controlled robot: a case study, Engineering Applications of Artificial Intelligence 23 (6) (2010) 1019–1034.
http://dx.doi.org/10.1016/j.engappai.2010.04.005

R. Caponetto, O. Diamante, G. Fargione, A. Risitano, D. Tringali, A soft computing approach to fuzzy sky-hook control of semiactive suspension, IEEE Transactions on Control Systems Technology 11 (6) (2003) 786–798.
http://dx.doi.org/10.1109/tcst.2003.819592

G.M. Khoury, M. Saad, H.Y. Kanaan, C. Asmar, Fuzzy PID control of a five DOF robot arm, Journal of Intelligent and Robotic Systems 40 (3) (2004) 299–320
http://dx.doi.org/10.1023/b:jint.0000038947.97195.22

G.K.I. Mann, B.G. Hu, R.G. Gosine, A systematic study of fuzzy PID controllers— function based evaluation approach, IEEE Transactions on Fuzzy Systems 9 (5) (2001) 699–712.
http://dx.doi.org/10.1109/91.963756

F.L. Lewis, K. Liu, Towards a paradigm for fuzzy logic control, Automatica 32 (2) (1996) 167–181.
http://dx.doi.org/10.1016/0005-1098(96)85547-6

N. Kubota, T. Arakawa, T. Fukuda, and K. Shimojima, “Motion planning for a robotic system with structured intelligence,” in Proc. 1997 IEEE Int. Symp. Computational Intelligence in Robotics and Automation, 1997, pp. 60–65.
http://dx.doi.org/10.1109/cira.1997.613839

A.Iborra, D.A.Caceres, F.J.Ortiz, J.P.Franco, P.S.Palma, B.Alvarez, "Design of Service Robots, Experiences using software engineering", IEEE Robotics & Automation Magazine, Vol.16, No.1, pp.34-45, 2009.
http://dx.doi.org/10.1109/mra.2008.931635

H. K. Lam, “Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-modelbased control approach,” IEEE Trans. Syst., Man, Cybern.: Part B, vol. 42, no. 1, pp. 258-267, 2012.
http://dx.doi.org/10.1109/tsmcb.2011.2163796

J. Mendel and R. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems, vol. 10, pp. 117–127, Apr. 2002.
http://dx.doi.org/10.1109/91.995115

S. Coupland, M. Gongora, R. John, and K. Wills, “A comparative study of fuzzy logic controllers for autonomous robots,” Proceedings of the 2006 Information Processing and Management of Uncertainty in Knowledge-based Systems conference, pp. 1332–1339, Paris, France, July 2006.

Ali Jebelli, Mustapha C. E. Yagoub, Nafiseh Lotfi, Balbir S. Dhillon, , Intelligent Control of a Small Climbing Robot, International Review of Automatic Control (IREACO), Vol 6, No 6 , (2013).

Sabri, N., Aljunid, S.A., Salim, M.S., Badlishah, R.B., Kamaruddin, R., Abd Malek, M.F., Fuzzy inference system: Short review and design, (2013) International Review of Automatic Control (IREACO), 6 (4), pp. 441-449.

Ján Cigánek, Filip Noge, Štefan Kozák, Modeling and Control of Mechatronic Systems Using Fuzzy Logic, (2014), International Review of Automatic Control (IREACO), 7 (1).

S.S. Syed Ahmad, “Fuzzy Modeling through Granular Computing”, University of Alberta, 2012.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize