Generation of Point to Point Trajectories for Robotic Manipulators Under Electro-Mechanical Constraints


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


A simple direct method is applied to solve the problem of optimal trajectory generation for serial manipulators under electro-mechanical constraints. The goal is to increase the robot productivity by using its electric motors outside of their continuous operating range. This is possible only if dynamics of actuators is considered and inherent constraints are included. For this purpose, a general electro-mechanical model for serial robots is first presented. Then, the problem of trajectory generation is cast as a non-linear optimization program using an approximation of joint position variables by means of algebraic polynomial splines which interpolate a set of control points. Finally, the optimization problem is solved using a sequential quadratic programming method for the unknown transfer time and the unknown position of control points, while minimizing a cost function and respecting elecro-mechanical constraints. Numerical and experimental results are presented to illustrate the efficiency of the proposed approach.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Robot; DC Motor; Dynamics; Trajectory; Optimization

Full Text:

PDF


References


W. Khalil, E. Dombre, Modeling, Identification & Control of Robots (HPS Edition, 2002).
http://dx.doi.org/10.1016/b978-190399666-9/50014-2

C. S. Lin, P. R. Chang, J. Y. S. Luh, Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans. On Automatic Control, vol. 28, pp. 1066-1073, 1983.
http://dx.doi.org/10.1109/tac.1983.1103181

B. Cao, G. I. Dodds, G. W. Irwin, Constrained time-efficient and smooth cubic spline trajectory generation for industrial robots. IEE Proc. On Control Theory Application, vol. 144, Issue 5, pp. 467-475, 1997.
http://dx.doi.org/10.1049/ip-cta:19971494

A. Piazzi, A. Visioli, Global minimum time trajectory planning of mechanical manipulators using internal analysis, Int. J. Cont., Vol. 71, Issue 4, pp. 631-652, 1998.
http://dx.doi.org/10.1080/002071798221713

A. Piazzi, A. Visioli, Global minimum-jerk trajectory planning of robot manipulators,” IEEE Trans. On Industrial Electronics, Vol. 47, Issue 1, pp 140-149, 2000.
http://dx.doi.org/10.1109/41.824136

A. Visioli, Trajectory planning of robot manipulators by using algebraic and trigonometric splines. Robotica, Vol. 18, pp. 611-631, 2000.
http://dx.doi.org/10.1017/s0263574700002721

W. Khalil, A. Liégeois, Génération de mouvements optimaux en robotiques. R.A.I.R.O. Automatique/Systems Analysis and Control, Vol. 18, Issue 1, pp 25-35, 1984.

H. P. Geering, L. Guzzella, S.A.R. Hepner and C. H. Onder, Time-optimal motions of robots in Assembly tasks. IEEE Trans. On Automatic control., Vol. AC-31, issue 6, 1986.
http://dx.doi.org/10.1109/tac.1986.1104333

Y. Chen, Structure of the time-optimal control law for multiple arms handling a common object along specified paths. IEEE Trans. On Automatic & Control, Vol. 37, Issue 10, 1992.
http://dx.doi.org/10.1109/9.256404

Y. Chen, Desrochers A. A proof of the structure of the minimum time control of robotic manipulators using Hamiltonian formulation. IEEE Trans. On Rob. and Aut., Vol. 6, Issue 3, pp388-393, 1990.
http://dx.doi.org/10.1109/70.56659

A. M. Formal’skii, The time-optimal control of the bending of a plane two-link mechanism. Jour. Appl. Maths Mechs., Vol. 60, Issue 2, pp. 243-251, 1996.
http://dx.doi.org/10.1016/0021-8928(96)00031-7

G. Bessonnet, P. Sardain. Optimal dynamics of actuated kinematic chains. Part 1: Dynamic modelling and symbolic differentiations. European Journal of Mechanics - A/Solids, Vol. 24, Issue 3, Pages 452-471, May-June 2005.
http://dx.doi.org/10.1016/j.euromechsol.2005.03.001

J. T. Betts, Survey of numerical methods for trajectory optimization, Jour. Of Guidance, Cont. & Dyn., Vol. 21, Issue 2, pp. 193-207, 1998.
http://dx.doi.org/10.2514/2.4231

O. V. Stryk, R. Bulirsch, Direct and indirect methods for trajectory optimization. Annals of Operations research, Vol. 37, pp. 357-373, 1993.
http://dx.doi.org/10.1007/bf02071065

O. V. Stryk, Optimal control of multibody systems in minimal coordinates. Zeitschrift für Angewandte Mathematik und 1998, Mechanik 78, Suppl. 3, pp 1117-1120.
http://dx.doi.org/10.1002/zamm.199807815124

A. Heim, O.V. Stryk, Trajectory optimization of inductrial robots with application to computer-aided robotics and robot controllers. Optimization, 2000, Vol. 47, pp. 407-420.
http://dx.doi.org/10.1080/02331930008844489

M. C. Steinbach, Optimal motion design using inverse dynamics. A ZIP research report, SC 97-12, 1997.

S. F. P. Saramago, V. J. Steffen Trajectory modelling of robot Manipulators in the presence of obstacles. Jour. of Optimization theory and applications, Vol 110, Issue 1, pp. 17-34, 2001.

J. E. Bobrow, B. J. Martin, G. Sohl, E. C. Wang, Park F. C. Kim J., Optimal robot motions for physical criteria. Jour. of Rob. Syst. Vol. 18, Issue 12, pp. 785-795, 2001.
http://dx.doi.org/10.1002/rob.8116

M. Yamamoto, Y. Isshiki, A. Mohri, Collision free minimum time trajectory planning for manipulators using global search and gradient method. Proc. IEEE/RSJ/GI, IROS, pp. 2184-2191, 1994.
http://dx.doi.org/10.1109/iros.1994.407564

J. K. Park, J. E. Bobrow, Reliable computation of minimum-time motions for manipulators moving in obstacle fields using a successive search for minimum-Overloaded trajectories. Jour. of Rob. Syst., Vol. 22, Issue 1, pp. 1-14, 2005.
http://dx.doi.org/10.1002/rob.20045

T. Chettibi, H. E. Lehtihet, M. Haddad, S. Hanchi, Minimum cost trajectory planning for industrial robots. European J. of Mechanics/A, vol. 23, pp703-715, 2004.
http://dx.doi.org/10.1016/j.euromechsol.2004.02.006

T. Chettibi, H. E. Lehtihet, A new approach for point to point optimal motion planning problems of robotic manipulators. In Proc. Of 6th Biennial Conf. on Engineering Syst. Design and Analysis, APM10, Istanbul 2002.

T. Chettibi, M. Haddad, A. Labed, S. Hanchi, Generating optimal dynamic motions for closed-chain robotic systems. European Journal of Mechanics A/Solids, Vol. 24, pp. 504-518, 2005.
http://dx.doi.org/10.1016/j.euromechsol.2005.01.005

D. G. Hull, Conversion of optimal control problems into parameter optimization problems. Jour. of Guidance, Cont. and Dyn. Vol. 20, issue 1, pp. 57-62, 1997.
http://dx.doi.org/10.2514/2.4033

T. Chettibi, M. Haddad, S. Hanchi, Parametric optimization for optimal synthesis of robotic systems’ motions. In Proc. Of 2nd Inter. Conf. on Informatics, in Control, Automation and Robotics, Barcelona, 2005.

K. Moojin, M. Wonkyu, B. Daesung, P. Ilhan, Dynamic simulations of electromechanical robotic systems driven by DC motors, Robotica 2004, Vol 22, pp. 523-531.
http://dx.doi.org/10.1017/s0263574704000177

Z. Shiller, H. Chang, V. Wong, The practical implementation of time-optimal control for robotic manipulators. Jour. Robot. Comput. Integrated Manufact, Vol. 12, issue 1, pp. 29–39, 1996.
http://dx.doi.org/10.1016/0736-5845(95)00026-7

C. An, C. Atkeson, J. Hollerbach. Model Based Control of a Robot Manipulator. MIT Press, Cambridge, MA, 1988.
http://dx.doi.org/10.1017/s0263574700005518

J. M. Hollerbach, Dynamic Scaling of Manipulator trajectories. ASME Jour. of Dyn. Syst., Measurement, and Contr. Vol. 106, Issue 1, pp 102-106, 1984.
http://dx.doi.org/10.1115/1.3149652

M. Tarkiainen, Z. Shiller, Time optimal motions of manipulators with actuator dynamics, IEEE Conf. On Robotics and Automation, pp 725-730, Atlanta, GA, May 1993.
http://dx.doi.org/10.1109/robot.1993.291873

P. Plédel, Actuator constraints in point to point motion planning of manipulators. Proc. Of the 34th Conf. on Decision and Control, New Orleans, LA, pp 1009-1010, December 1995.
http://dx.doi.org/10.1109/cdc.1995.480220

P. Plédel, Génération de mouvement optimaux pour un robot manipulateur. PHD. thesis, Ecole centrale de Nantes, France, 1996.

P. Plédel, Y. Bestaoui, Motion planning of industrial robots with technological constraints. World automation congress, Vol. 3, Montpellier (France) , 1996.

P. Plédel, Y. Bestaoui, M. Gautier, A motion generation method of industrial robots in Cartesian space. Proc. of the 35th Conf. on Decision and Control, Kobe, Japan, pp863-868, 1996.
http://dx.doi.org/10.1109/cdc.1996.574533

P. Plédel, Y. Bestaoui, Polynomial motion generation of Manipulators with technological constraints. Proc. Of IEEE Int. Conf. on Robotics and Automation, Minneapolis, Minnesota, pp. 448-452, April 1996.
http://dx.doi.org/10.1109/robot.1996.503817

F. C. Park, J. E. Bobrow, and S. R. Ploen, A Lie group formulation of robot dynamics. International Journal of Robotics Research, Vol. 14, N°6, pp. 609–618, 1995.
http://dx.doi.org/10.1177/027836499501400606

J. Angeles, Fundamentals of robotic mechanical systems. Theory, methods and algorithms (Springer Edition, 1997).
http://dx.doi.org/10.1007/b97597

W. Armstrong, Recursive solution to the equations of motion of an n-link manipulator. In Proc. 5thWorld Congress on Theory of Machines and Mechanisms, Montreal, pp. 1343–1346, 1979.

P. André, J.-M. Kauffmann, F. Lhote, J. P. Taillard, Les robots. Tome 4: Constituants technologiques (Edition Hermes, 1983).

R. H. Bishop, The Mechatronics Handbook. (CRC Press, 2002).
http://dx.doi.org/10.1108/ir.2002.29.5.470.3

P. Chedmail, Synthèse de robots et de sites robotisés. Modélisation de robots souples. PHD Thesis, ENSM, Nantes, 1990.

T. Chettibi, M. Haddad, S. Hanchi, Application of algebraic polynomial splines for trajectory generation problems, 5èmes journées de Mécanique, EMP, Algiers, 2006.

I. Schoenberg, Spline functions and the problem of graduation. Proc. of the National Academy of Sciences, Vol. 52, pp. 947-950, 1964.
http://dx.doi.org/10.1073/pnas.52.4.947

C. De Boor, A Practical Guide to Splines. (Springer-Verlag, New York, 1978).
http://dx.doi.org/10.1002/zamm.19800600129

D. Simon, Data Smoothing and Interpolation Using Eighth-order Algebraic Splines, IEEE Transactions on Signal Processing, Vol. 52, no. 4, pp. 1136-1144, April 2004.
http://dx.doi.org/10.1109/tsp.2004.823489

M. J. Powell, Algorithm for non-linear constraints that use Lagrangian functions. Mathematical programming, Vol. 14, pp. 224-248, 1984.
http://dx.doi.org/10.1007/bf01588967

R. Fletcher, Practical methods of optimization. (Wiley Interscience Publication, Second Edition, 1987).

A. Barclay, P. E. Gill, J. B. Rosen, SQP Methods and their application to numerical optimal control. Report NA97-3, Dep. of mathematics, University of California, San Diego, 1997.

C. Pressé, Identification des paramètres dynamiques des robots. PH. D. Thesis Université de Nantes/Ecole Contrale de Nantes, France, 1994.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize