Open Access Open Access  Restricted Access Subscription or Fee Access

A Numerical Approach to Hemodialyzer Design Optimization: Comparison with the Existing Transport Models


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v16i4.23789

Abstract


An optimal dialyzer design that provides maximum solute clearance is not available in literature as no analytical theories proposed could include all the factors that are involved in hemodialyzer. All the current dialyzer membranes fail to meet the tradeoff of selectivity and permeability as these hollow fiber membranes still fail in effective toxin clearance and retention of needed solutes. Literatures proposing transport models and optimization factors gain explicit interest now. This paper numerically derives the factors and parameters responsible for effective toxin removal. Thus, the parameters derived will be used in modeling dialyzer membranes by using finite element analysis software and thus the membrane performance will be evaluated. Literatures from standard journals, highlighting experimental data results are then used to benchmark the mathematical model thus proposed. The simulation models in this work put forward optimal designs that can be considered for future works.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Hemodialyzer; High flux Membrane; Dialyzer Optimization; Toxin Removal; Solute-Clearance; Stokes Flow; Numerical Analysis

Full Text:

PDF


References


Osman, Y., Elawdy, M., Taha, D., El-Halwagy, S., Abd El-Hamid, M., Abouelkheir, R., Mosbah, A., Endoscopic Confirmation in the Diagnosis of Upper Tract Urothelial Cancer: Is It Still a Routine Necessity for all Patients?, (2020) Journal of Genitourinary Research and Practice, 2 (2), pp. 16-20.
https://doi.org/10.15866/irege.v2i2.19215

K. Annan, Mathematical modeling for hollow fiber dialyzer: Blood and hco- 3-Dialysate flow characteristics, International Journal of Pure Applied Mathematics, vol. 79, no. 3, pp. 425-452, 2012.

Sakai, Technical determination of optimal dimensions of hollow fibre membranes for clinical dialysis, Nephrology, Dialysis, Transplantation, vol 4, pp. 73-77, 1993.

J. E. Sigdell, Calculation of combined diffusive and convective mass transfer, International Journal of Artificial Organs, vol. 5, no. 6, pp. 361-372, 1982.
https://doi.org/10.1177/039139888200500609

Y. Sakai, S. Wada, H. Matsumoto, T. Suyama, O. Ohno, and I. Anno, Nondestructive evaluation of blood flow in a dialyzer using X-ray computed tomography, Journal of Artificial Organs, vol. 6, no. 3, pp. 197-204, 2003.
https://doi.org/10.1007/s10047-003-0228-6

L. E. Vander Velde C, Theoretical assessment of the effect of flow maldistributions on the mass transfer efficiency of artificial organs, Medical and Biological Engineering and Computing, 23 pp: 224-229, 1985.
https://doi.org/10.1007/BF02446862

J. Vienken and C. Ronco, New developments in hemodialyzers, Contributions in Nephrology, vol. 133, pp. 105-118, 2001.
https://doi.org/10.1159/000060115

W. R. Clark, E. Rocha, and C. Ronco, Solute removal by hollow-fiber dialyzers, Contributions in Nephrology, vol. 158, pp. 20-33, 2007.
https://doi.org/10.1159/000107232

C. Ronco, A. Brendolan, C. Crepaldi, M. Rodighiero, and M. Scabardi, Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning techniha, Journal of American Society of Nephrology, vol. 13, no. suppl. 1, pp. 53-61, 2001.
https://doi.org/10.1681/ASN.V13suppl_1s53

C. Ronco, B. Breuer, and S. K. Bowry, Hemodialysis membranes for high-volume hemodialytic therapies: The application of nanotechnology, Hemodialysis International, vol. 10, no. suppl. 1, pp. 48-50, 2006.
https://doi.org/10.1111/j.1542-4758.2006.01191.x

Sigdell JE, Calculation of combined diffusive and convective mass transfer, The International Journal of Artificial Organs. 1982;5(6):361-372.
https://doi.org/10.1177/039139888200500609

Vander Velde, C., and E. F. Leonard. Theoretical assessment of the effect of flow maldistributions on the mass transfer efficiency of artificial organs. Medical and Biological Engineering and Computing 23, pp: 224-229, 1985.
https://doi.org/10.1007/BF02446862

Kunimoto, T., et al. Controlled ultrafiltration (UF) with hemodialysis (HD): analysis of coupling between convective and diffusive mass transfer in a new HD-UF system. Trans. ASAIO 23 pp: 234-241, 1977.
https://doi.org/10.1097/00002480-197700230-00063

W. Ding, L. He, G. Zhao, H. Zhang, Z. Shu, and D. Gao, Double porous media model for mass transfer of hemodialyzers, International Journal of Heat Mass Transfer, vol. 47, no. 22, pp. 4849-4855, 2004.
https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.017

M. Y. Jaffrin, L. Ding, and J. M. Laurent, Simultaneous convective and diffusive mass transfers in a hemodialyser, Journal of Biomechanical. Engineering, vol. 112, no. 2, pp. 212-219, 1990.
https://doi.org/10.1115/1.2891174

I. Noda and C. C. Gryte, Mass transfer in regular arrays of hollow fibers in countercurrent dialysis, AIChE J., vol. 25, no. 1, pp. 113-122, 1979.
https://doi.org/10.1002/aic.690250113

G. A. Gostoli C, Mass transfer in a hollow fiber dialyzer, Journal of Membrane science, pp. 133-148, 1980.
https://doi.org/10.1016/S0376-7388(00)82156-0

Y. L. Chang and C. J. Lee, Solute transport characteristics in hemodiafiltration, J. Memb. Sci., vol. 39, no. 2, pp. 99-111, 1988.
https://doi.org/10.1016/S0376-7388(00)80983-7

D. G. Taylor, J. M. Piret, and B. D. Bowen, Protein polarization in isotropic membrane hollow-fiber bioreactors, AIChE J., vol. 40, no. 2, pp. 321-333, 1994.
https://doi.org/10.1002/aic.690400211

A. Wüpper, D. Woermann, F. Dellanna, and C. A. Baldamus, Retrofiltration rates in high-flux hollow fiber hemodialyzers: Analysis of clinical data, J. Memb. Sci., vol. 121, no. 1, pp. 109-116, 1996.
https://doi.org/10.1016/0376-7388(96)00167-6

A. Wüpper, F. Dellanna, C. A. Baldamus, and D. Woermann, Local transport processes in high-flux hollow fiber dialyzers, J. Memb. Sci., vol. 131, no. 1-2, pp. 181-193, 1997.
https://doi.org/10.1016/S0376-7388(97)00044-6

C. Legallais, G. Catapano, B. Von Harten, and U. Baurmeister, A theoretical model to predict the in vitro performance of hemodiafilters, J. Memb. Sci., vol. 168, no. 1-2, pp. 3-15, 2000.
https://doi.org/10.1016/S0376-7388(99)00297-5

A. Frank, G. G. Lipscomb, and M. Dennis, Visualization of concentration fields in hemodialyzers by computed tomography, J. Memb. Sci., vol. 175, no. 2, pp. 239-251, 2000.
https://doi.org/10.1016/S0376-7388(00)00421-X

J. Wu and V. Chen, Shell-side mass transfer performance of randomly packed hollow fiber modules, J. Memb. Sci., vol. 172, no. 1-2, pp. 59-74, 2000.
https://doi.org/10.1016/S0376-7388(00)00318-5

J. Lemanski and G. G. Lipscomb, Effect of shell-side flows on the performance of hollow-fiber gas separation modules, J. Memb. Sci., vol. 195, no. 2, pp. 215-228, 2002.
https://doi.org/10.1016/S0376-7388(01)00561-0

W. Ding, L. He, G. Zhao, X. Luo, M. Zhou, and D. Gao, Effect of Distribution Tabs on Mass Transfer of Artificial Kidney, AIChE J., vol. 50, no. 4, pp. 786-790, 2004.
https://doi.org/10.1002/aic.10073

M. Y. Jaffrin, Convective Mass Transfer in Hemodialysis, Artif. Organs, vol. 19, no. 11, pp. 1162-1171, 1995.
https://doi.org/10.1111/j.1525-1594.1995.tb02277.x

M.Y. Jaffrin, B.B. Gupta, J.M. Malbrancq, A one-dimensional model of simultaneous hemodialysis and ultrafiltration with highly permeable membranes, Journal of Biomechanical Engineering, vol. 103 pp. 261-266, 1981.
https://doi.org/10.1115/1.3138290

A. Werynski, J. Wanieski, Theoretical description of mass transport in medical membrane devices, Artif. Organs, vol. 19 (5) pp. 420-427, 1995.
https://doi.org/10.1111/j.1525-1594.1995.tb02353.x

A. Wüpper, D. Woermann, F. Dellanna, C.A. Baldamus, Retrofiltration rates in highflux hollow fiber hemodialysers: analysis of clinical data, Journal of Membrane Science. Vol. 121 pp. 109-116, 1996.
https://doi.org/10.1016/0376-7388(96)00167-6

A. Wüpper, F. Dellanna, C.A. Baldamus, D. Woermann, Local transport processes in high-flux hollow fiber dialyzers, Journal of Membrane Science, vol. 131 (1997) 181-193.
https://doi.org/10.1016/S0376-7388(97)00044-6

M. Raff, M. Welsch, H. Göhl, H. Hildwein, M. Storr, B. Wittner, Advanced modeling of high flux hemodialysis, Journal Membrane Science, vol. 216 1-11, 2003.
https://doi.org/10.1016/S0376-7388(02)00552-5

S. Eloot, D. De Wachter, I. Van Tricht, P. Verdonck, Computational flow modeling in hollow-fiber dialyzers, Artificial Organs, vol. 26 pp. 590-599, 2002.
https://doi.org/10.1046/j.1525-1594.2002.07081.x

S. Eloot, J. Vierendeels, P. Verdonck, Optimisation of solute transport in dialysers using athree-dimensional finite volume model, Comp. Methods Biomech. Biomed. Eng. vol. 9 pp. 363-370, 2006.
https://doi.org/10.1080/10255840601002728

W. Ding, W. Li, S. Sun, X. Zhou, P.A. Hardy, S. Ahmad, D. Gao, Three-dimensional simulation of mass transfer in artificial kidneys, Artif. Organs 39 E79-E89, 2015.
https://doi.org/10.1111/aor.12415

D. Quemada, General features of blood circulation in narrow vessels, in: C.M. Rokkiewcz (Ed.), Arteries and Arterial Blood Flow: Biological and Physiological Aspects, Springer-Verlag, Wien, 1983.

Innes, A., Farrell, A. M., Burden, R. P., Morgan, A. G. & Powell, R. J., Complement activation by cellulosic dialysis membranes, Journal of Clinical Pathology, Volume 47, Issue 2, Pages 155-158, 1994.
https://doi.org/10.1136/jcp.47.2.155

Gastaldello, K., Melot, C., Kahn, R. J., Vanherweghem J. L., Vincent J. L., & Tielemans C., Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. A prospective randomized study, Nephrology Dialysis Transplantation, Volume 15, Pages 224-230, 2000.
https://doi.org/10.1093/ndt/15.2.224

Hayama, M., Kohori, F., Sakai K., AFM observation of small surface pores of hollow-fiber dialysis membrane using highly sharpened probe, Journal of Membrane Science, Volume 197, Issues 1-2, Pages 243-249, 2002.
https://doi.org/10.1016/S0376-7388(01)00627-5

Borzou, S. R., Gholyaf, M., Zandiha, M., Amini, R., Goodarzi, M. T., Torkaman, B., The effect of increasing blood flow rate on dialysis adequacy in hemodialysis patients, Saudi J Kidney Dis Transpl, Volume 20, Pages 639-642, 2009.

Sangeetha MS, Kandaswamy A, Lakshmi Deepika C, Revanth CV. Finite element analysis for comparing the performance of straight and undulated fibers in altering the filtering efficiency of hemodialyzer membranes, Journal of Mechanics in Medicine and Biology, vol. 19 (05):1850063, 2019 Aug 30.
https://doi.org/10.1142/S021951941850063X

Sangeetha MS, Kandaswamy A. Fluid structure interaction study on straight and undulated hollow fibre hemodialyser membranes. International Journal of Biomedical Engineering and Technology, vol. 33(1), pp. 11-27, 2020.
https://doi.org/10.1504/IJBET.2020.10029768

Nanduri, Sricharan. CFD investigation of mass transfer to crimped hollow fiber membranes. PhD Dessertation, University of Toledo, 2011.

R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, J. Wiley & Sons, Inc., New York, 2002.

D. Donato et al., Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model, J. Memb. Sci., vol. 541, no. July, pp. 519-528, 2017.
https://doi.org/10.1016/j.memsci.2017.07.018

Ramakrishna, A., Rao, M., Rama Raju, A., Performance Analysis of Hybrid Microchannel Heat Sink for Non-Uniform Heat Fluxes Under Laminar Flow Conditions, (2022) International Review of Mechanical Engineering (IREME), 16 (10), pp. 540-547.
https://doi.org/10.15866/ireme.v16i10.23090

Vander Velde, C., and E. F. Leonard. Theoretical assessment of the effect of flow maldistributions on the mass transfer efficiency of artificial organs. Medical and Biological Engineering and Computing 23 pp: 224-229, 1985.
https://doi.org/10.1007/BF02446862

Pardo García, C., Pabon, J., Fonseca Vigoya, M., Development of a Multiphysics Model for the Prediction of the Electrical Characteristics of Thermoelectric Modules, (2022) International Journal on Energy Conversion (IRECON), 10 (6), pp. 188-197.
https://doi.org/10.15866/irecon.v10i6.22077

K. Haas, Modeling Blood Cell Concentration in a Dialysis Cartridge, PhD Dissertation, Worcester polytechnic institute, April2010.

J. Bosch, R. Ponti, S. Glabman, and A. Lauer, Sodium fluxes during hemodialysis, Nephron, vol. 45, no. 2, pp. 86-92, 1987.
https://doi.org/10.1159/000184085

O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, BBA - Biochim. Biophys. Acta, vol. 27, no. C, pp. 229-246, 1958.
https://doi.org/10.1016/0006-3002(58)90330-5

M. S. Islam and J. Szpunar, Study of Dialyzer Membrane (Polyflux 210H) and Effects of Different Parameters on Dialysis Performance, Open J. Nephrol., vol. 03, no. 03, pp. 161-167, 2013.
https://doi.org/10.4236/ojneph.2013.33029

L. Peterson, Clinical Hematology: Theory and Procedures, vol. 102, no. 2. 1994.
https://doi.org/10.1093/ajcp/102.2.265

B. Datasheet, Polyflux H, accessed in January 2023

R. Ouseph, C. A. Hutchison, and R. A. Ward, Differences in solute removal by two high-flux membranes of nominally similar synthetic polymers, Nephrol. Dial. Transplant., vol. 23, no. 5, pp. 1704-1712, 2008.
https://doi.org/10.1093/ndt/gfm916

M. Hulko, U. Haug, J. Gauss, A. Boschetti-de-Fierro, W. Beck, and B. Krause, Requirements and Pitfalls of Dialyzer Sieving Coefficients Comparisons, Artif. Organs, vol. 42, no. 12, pp. 1164-1173, 2018.
https://doi.org/10.1111/aor.13278

Data Sheet -C. ml, Clinical performance 3 in vitro clearances in vitro clearances are indicated in (ml/min) ± 10% myoglobin 17 kda QB 200 QB 300 QB 400 QB 500, accessed in January 2023

I. Geremia, R. Bansal, and D. Stamatialis, In vitro assessment of mixed matrix hemodialysis membrane for achieving endotoxin-free dialysate combined with high removal of uremic toxins from human plasma, Acta Biomater., vol. 90, pp. 100-111, 2019.
https://doi.org/10.1016/j.actbio.2019.04.009

S. Eloot, Y. D'Asseler, P. De Bondt, and P. Verdonck, Combining SPECT medical imaging and computational fluid dynamics for analyzing blood and dialysate flow in hemodialyzers, Int. J. Artif. Organs, vol. 28, no. 7, pp. 739-749, 2005.
https://doi.org/10.1177/039139880502800713

A. H. Kirsch et al., Performance of hemodialysis with novel medium cut-off dialyzers, Nephrol. Dial. Transplant., vol. 32, no. 1, pp. 165-172, 2017.
https://doi.org/10.1093/ndt/gfw310

J. P. Bhimani, R. Ouseph, and R. A. Ward, Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and β2-microglobulin during clinical haemodialysis, Nephrol. Dial. Transplant., vol. 25, no. 12, pp. 3990-3995, 2010.
https://doi.org/10.1093/ndt/gfq326

D. Donato, M. Storr, and B. Krause, Design optimization of hollow fiber dialyzers to enhance internal filtration based on a mathematical model, J. Memb. Sci., vol. 598, no. October, p. 117690, 2020.
https://doi.org/10.1016/j.memsci.2019.117690


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize