Open Access Open Access  Restricted Access Subscription or Fee Access

Maximum Temperature of Lithium-Ion Batteries Pack Design Optimization Using Taguchi Method


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v16i4.23740

Abstract


Because of its exceptional qualities, such as high energy density, extended lifespan, and low self-discharge, lithium-ion (Li-ion) batteries have grown in popularity in recent years. However, the maximum temperature that these batteries can endure while in use is essential to their safety and effectiveness. The Taguchi technique, a statistical strategy that permits efficient evaluation of multiple experimental parameters, has been utilized by the researchers to improve this. This study has changed six input elements, each with five levels, including battery diameter, height, capacity, activation energy, density, and final state of charge, in order to identify the best settings to optimize the maximum temperature of lithium ion batteries. The study's findings have been validated by using an analysis of variance (ANOVA). The study has discovered that the diameter and the height of the battery have been the most critical parameters in determining the maximum temperature of the battery. This approach discovers perfect circumstances that can increase Li-ion battery performance and potentially broaden their use in a variety of applications. In order to simulate the design, the researchers have used the COMSOL Multiphysics software to create a Li-ion battery pack that could withstand 50°C and have conducted a transient analysis over 0.2 hours in order to observe the increase in temperature due to internal resistance, electrochemical reactions, and ambient temperature. This approach can eliminate design problems that arise from the traditional trial-and-error method by tuning the control parameters examined in this study. This approach can streamline the design process of Li-ion battery packs for specific applications, making it more efficient.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Lithium-Ion Batteries Pack Design; Taguchi Method; Maximum Temperature; COMSOL Multiphysics Software; Analysis of Variance (ANOVA); State of Charge; Open Circuit Voltage

Full Text:

PDF


References


Vendra, C. M., Shelke, A. V., Buston, J. E., Gill, J., Howard, D., Read, E., Abaza, A., Cooper, B., & Wen, J. X. (2022). Numerical and experimental characterisation of high energy density 21700 lithium-ion battery fires. Process Safety and Environmental Protection, 160, 153-165.
https://doi.org/10.1016/j.psep.2022.02.014

He, W., Guo, W., Wu, H., Lin, L., Liu, Q., Han, X., Xie, Q., Liu, P., Zheng, H., Wang, L., Yu, X., Peng, D.-L., Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries. Adv. Mater. 2021, 33, 2005937.
https://doi.org/10.1002/adma.202005937

Zhou, L., Zuo, TT., Kwok, C.Y. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat Energy 7, 83-93 (2022).
https://doi.org/10.1038/s41560-021-00952-0

Li, M., Yang, J., Shi, Y., Chen, Z., Bai, P., Su, H., Xiong, P., Cheng, M., Zhao, J., Xu, Y., Soluble Organic Cathodes Enable Long Cycle Life, High Rate, and Wide-Temperature Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2107226.
https://doi.org/10.1002/adma.202107226

Liu, L., Liu, C., Wang, M., Li, B., Wang, K., Fan, X., Li, N., Wang, H., Hu, S., & Diao, X. (2023). Low self-discharge all-solid-state electrochromic asymmetric supercapacitors at wide temperature toward efficient energy storage. Chemical Engineering Journal, 456, 141022.
https://doi.org/10.1016/j.cej.2022.141022

Shan, H., Cao, H., Xu, X. et al. Investigation of self-discharge properties and a new concept of open-circuit voltage drop rate in lithium-ion batteries. J Solid State Electrochem 26, 163-170 (2022).
https://doi.org/10.1007/s10008-021-05049-y

Long, M., Wang, T., Duan, P., Gao, Y., Wang, X., Wu, G., & Wang, Y. (2022). Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery. Journal of Energy Chemistry, 65, 9-18.
https://doi.org/10.1016/j.jechem.2021.05.027

Park, G., Ryu, H., Noh, T., Kang, G., & Sun, Y. (2022). Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries. Materials Today, 52, 9-18.
https://doi.org/10.1016/j.mattod.2021.11.018

Ruhani, B., Abidi, A., Hussein, A. K., Younis, O., Degani, M., & Sharifpur, M. (2022). Numerical simulation of the effect of battery distance and inlet and outlet length on the cooling of cylindrical lithium-ion batteries and overall performance of thermal management system. Journal of Energy Storage, 45, 103714.
https://doi.org/10.1016/j.est.2021.103714

Jiang, Z., Li, H., Qu, Z., & Zhang, J. (2022). Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions. International Journal of Hydrogen Energy, 47(15), 9428-9459.
https://doi.org/10.1016/j.ijhydene.2022.01.008

Zhang, Y., Lu, M., Li, Q., & Shi, F. (2022). Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery. Journal of Solid State Chemistry, 310, 123072.
https://doi.org/10.1016/j.jssc.2022.123072

Tian, Y., Lin, C., Chen, X., Yu, X., Xiong, R., & Zhang, Q. (2023). Reversible lithium plating on working anodes enhances fast charging capability in low-temperature lithium-ion batteries. Energy Storage Materials, 56, 412-423.
https://doi.org/10.1016/j.ensm.2023.01.035

Qiu, Y., & Jiang, F. (2022). A review on passive and active strategies of enhancing the safety of lithium-ion batteries. International Journal of Heat and Mass Transfer, 184, 122288.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122288

Zheng, F., Jiang, J., Sun, B., Zhang, W., & Pecht, M. (2016). Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles. Energy, 113, 64-75.
https://doi.org/10.1016/j.energy.2016.06.010

Thakur, A. K., Prabakaran, R., Elkadeem, M., Sharshir, S. W., Arıcı, M., Wang, C., Zhao, W., Hwang, J., & Saidur, R. (2020). A state of art review and future viewpoint on advance cooling techniques for Lithium-ion battery system of electric vehicles. Journal of Energy Storage, 32, 101771.
https://doi.org/10.1016/j.est.2020.101771

Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M., & Wohlfahrt-Mehrens, M. (2014). Temperature dependent ageing mechanisms in Lithium-ion batteries - A Post-Mortem study. Journal of Power Sources, 262, 129-135.
https://doi.org/10.1016/j.jpowsour.2014.03.112

Wang, J., Zheng, Q., Fang, M., Ko, S., Yamada, Y., Yamada, A., Concentrated Electrolytes Widen the Operating Temperature Range of Lithium-Ion Batteries. Adv. Sci. 2021, 8, 2101646.
https://doi.org/10.1002/advs.202101646

Aris, A. M., & Shabani, B. (2017). An Experimental Study of a Lithium Ion Cell Operation at Low Temperature Conditions. Energy Procedia, 110, 128-135.
https://doi.org/10.1016/j.egypro.2017.03.117

Akbarzadeh, M., Kalogiannis, T., Jaguemont, J., He, J., Jin, L., Berecibar, M., & Van Mierlo, J. (2020). Thermal modeling of a high-energy prismatic lithium-ion battery cell and module based on a new thermal characterization methodology. Journal of Energy Storage, 32, 101707.
https://doi.org/10.1016/j.est.2020.101707

Qu, Z., Jiang, Z., & Wang, Q. (2019). Experimental study on pulse self-heating of lithium-ion battery at low temperature. International Journal of Heat and Mass Transfer, 135, 696-705.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.020

Jiang, Z., & Qu, Z. (2019). Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: A comprehensive numerical study. Applied Energy, 242, 378-392.
https://doi.org/10.1016/j.apenergy.2019.03.043

Ren, D., Hsu, H., Li, R., Feng, X., Guo, D., Han, X., Lu, L., He, X., Gao, S., Hou, J., Li, Y., Wang, Y., & Ouyang, M. (2019). A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. ETransportation, 2, 100034.
https://doi.org/10.1016/j.etran.2019.100034

Hossein Bashiri, A., Sangtarash, A., & Zamani, M. (2022). The effect of the porous media on thermal management of lithium-ion battery pack; a comparative and numerical study. Thermal Science and Engineering Progress, 34, 101427.
https://doi.org/10.1016/j.tsep.2022.101427

Chang, G, Cui, X, Li, Y, Ji, Y. Effects of reciprocating liquid flow battery thermal management system on thermal characteristics and uniformity of large lithium-ion battery pack. Int J Energy Res. 2020; 44: 6383- 6395.
https://doi.org/10.1002/er.5363

Menale, C., D'Annibale, F., Mazzarotta, B., & Bubbico, R. (2019). Thermal management of lithium-ion batteries: An experimental investigation. Energy, 182, 57-71.
https://doi.org/10.1016/j.energy.2019.06.017

Yetik, O, Yilmaz, N, Karakoc, TH. Computational modeling of a lithium-ion battery thermal management system with Al2O3-based nanofluids. Int J Energy Res. 2021; 45: 13851- 13864.
https://doi.org/10.1002/er.6718

Najafi Khaboshan, H., Jaliliantabar, F., Adam Abdullah, A., & Panchal, S. (2023). Improving the cooling performance of cylindrical lithium-ion battery using three passive methods in a battery thermal management system. Applied Thermal Engineering, 227, 120320.
https://doi.org/10.1016/j.applthermaleng.2023.120320

Kirad, K., & Chaudhari, M. (2021). Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system. Journal of Power Sources, 481, 229016.
https://doi.org/10.1016/j.jpowsour.2020.229016

Zichen, W., & Changqing, D. (2021). A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews, 139, 110685.
https://doi.org/10.1016/j.rser.2020.110685

Landini, S., Leworthy, J., & O'Donovan, T. (2019). A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells. Journal of Energy Storage, 25, 100887.
https://doi.org/10.1016/j.est.2019.100887

Lin, J., Liu, X., Li, S., Zhang, C., & Yang, S. (2021). A review on recent progress, challenges and perspective of battery thermal management system. International Journal of Heat and Mass Transfer, 167, 120834.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120834

Tran, M.-K.; Panchal, S.; Khang, T.D.; Panchal, K.; Fraser, R.; Fowler, M. Concept Review of a Cloud-Based Smart Battery Management System for Lithium-Ion Batteries: Feasibility, Logistics, and Functionality. Batteries 2022, 8, 19.
https://doi.org/10.3390/batteries8020019

Zhang, J., Shao, D., Jiang, L., Zhang, G., Wu, H., Day, R., & Jiang, W. (2022). Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 159, 112207.
https://doi.org/10.1016/j.rser.2022.112207

Joshy, N., Hajiyan, M., Siddique, A. R. M., Tasnim, S., Simha, H., & Mahmud, S. (2020). Experimental investigation of the effect of vibration on phase change material (PCM) based battery thermal management system. Journal of Power Sources, 450, 227717.
https://doi.org/10.1016/j.jpowsour.2020.227717

Alrashdan, M. H. (2020). MEMS piezoelectric micro power harvester physical parameter optimization, simulation, and fabrication for extremely low frequency and low vibration level applications. Microelectronics Journal, 104, 104894.
https://doi.org/10.1016/j.mejo.2020.104894

Alrashdan, M.H.S., Hamzah, A.A. & Majlis, B. Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker. Microsyst Technol 21, 1607-1617 (2015).
https://doi.org/10.1007/s00542-014-2334-1

Alrashdan, M. H. (2020). Data relating to mems piezoelectric micro power harvester physical parameter optimization, for extremely low frequency and low vibration level applications. Data in Brief, 33, 106571.
https://doi.org/10.1016/j.dib.2020.106571

Alrashdan, M.H.S., Hamzah, A.A. & Majlis, B.Y. Power density optimization for MEMS piezoelectric micro power generator below 100 Hz applications. Microsyst Technol 24, 2071-2084 (2018).
https://doi.org/10.1007/s00542-017-3608-1

Alrashdan H. S. Mohd, Ahmed Zayed Mohammad and Abu-Al-Aish Amir, Modeling and Optimization of Frequency Tunable Piezoelectric Micro Power Generator, Micro and Nanosystems 2017; 9(2).
https://doi.org/10.2174/1876402910666180118125520

Mohammed, A. H., Esmaeeli, R., Aliniagerdroudbari, H., Alhadri, M., Hashemi, S. R., Nadkarni, G., & Farhad, S. (2019). Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway. Applied Thermal Engineering, 160, 114106.
https://doi.org/10.1016/j.applthermaleng.2019.114106

Wang, J., Lu, S., Wang, Y., Li, C., & Wang, K. (2020). Effect analysis on thermal behavior enhancement of lithium-ion battery pack with different cooling structures. Journal of Energy Storage, 32, 101800.
https://doi.org/10.1016/j.est.2020.101800

Deng, T., Zhang, G., Ran, Y., & Liu, P. (2019). Thermal performance of lithium ion battery pack by using cold plate. Applied Thermal Engineering, 160, 114088.
https://doi.org/10.1016/j.applthermaleng.2019.114088

Rajendra S. Negi, Erdogan Celik, Ruijun Pan, Robert Stäglich, Jürgen Senker, and Matthias T. Elm Insights into the Positive Effect of Post-Annealing on the Electrochemical Performance of Al2O3-Coated Ni-Rich NCM Cathodes for Lithium-Ion Batteries ACS Applied Energy Materials 2021 4 (4), 3369-3380.
https://doi.org/10.1021/acsaem.0c03135

Choudhari, V., Dhoble, D. A., & Sathe, T. (2020). A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. Journal of Energy Storage, 32, 101729.
https://doi.org/10.1016/j.est.2020.101729

Del Pizzo, A., Meo, S., Brando, G., Dannier, A., Ciancetta, F., An Energy Management Strategy for Fuel-cell Hybrid Electric Vehicles via Particle Swarm Optimization Approach, (2014) International Review on Modelling and Simulations (IREMOS), 7 (4), pp. 543-553.
https://doi.org/10.15866/iremos.v7i4.4227

Esposito, F., Isastia, V., Meo, S., PSO based energy management strategy for pure electric vehicles with dual energy storage systems, (2010) International Review of Electrical Engineering (IREE), 5 (5), pp. 1862-1871.

Isastia, V., Meo, S., Overview on automotive energy storage systems, (2009) International Review of Electrical Engineering (IREE), 4 (6), pp. 1122-1144.

M. Coppola, P, Cennamo, A. Dannier, D. Iannuzzi, S. Meo, Wireless Power Transfer circuit for e-bike battery charging system, IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, pp. 1-5, Nottingham, UK, November, 2018.
https://doi.org/10.1109/ESARS-ITEC.2018.8607342


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize