Open Access Open Access  Restricted Access Subscription or Fee Access

Indoor Optical Wireless Communications-Based Differential Modulation and Low-Density Parity-Check Coding


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v16i4.23393

Abstract


This paper considers indoor Optical Wireless Communication (OWC) channel modeling. Time delay spread, rms delay spread along with the channel impulse response, and channel frequency response are evaluated and presented. The presence of multiple reflections from walls, doors, and room furniture in the channel model leads to multipath fading. As a consequence, this multipath fading causes the signal to become time-dispersed, eventually resulting in a deterioration of the Bit Error Ratio (BER). To overcome this challenge, a Low-Density Parity-Check coding (LDPC), as standardized in the Fifth Generation (5G) wireless system, is implemented for Differential Phase-Shift Keying (DPSK) with various code rates. The performance of transmission of 4 DPSK and 8 DPSK coded with LDPC over an indoor OWC was evaluated for the first time. Bit Error Ratio (BER) results show that, even in differential encoding, LDPC performs very well in indoor OWC, providing low cost and less complexity. The proposed approach achieves a gain of 7.75 dB of SNR at a BER of 10-5 using ½ rate LDPC and 4 DPSK. ½ code rate offers superior results for both 4 DPSK and 8 DPSK.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Differential Phase-Shift Keying Modulation (DPSK); Bit Error Ratio (BER); Low-Density Parity-Check (LDPC) Codes; Optical Wireless Communications (OWC); Signal-To-Noise Ratio (SNR)

Full Text:

PDF


References


Altakhaineh AT, Alja'afreh SS, Almatarneh AM, Almajali E, Al-Tarawneh L, Yousaf J. A Quad-Band Shared-Aperture Antenna Based on Dual-Mode Composite Quarter-Mode SIW Cavity for 5G and 6G with MIMO Capability. Electronics. 2023; 12(11):2480.
https://doi.org/10.3390/electronics12112480

S. Yahia, Y. Meraihi, A. Ramdane-Cherif, A. B. Gabis, D. Acheli, and H. Guan, A Survey of Channel Modeling Techniques for Visible Light Communications, Journal of Network and Computer Applications, vol. 194, p. 103206, 2021.
https://doi.org/10.1016/j.jnca.2021.103206

Kolawole, O., Mosalaosi, M., Afullo, T., Visibility Modeling and Prediction for Free Space Optical Communication Systems for South Africa, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (3), pp. 161-174.
https://doi.org/10.15866/irecap.v10i3.18008

C. X. Wang et al., On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds, IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 905-974, 2023.
https://doi.org/10.1109/COMST.2023.3249835

T. Foggi, On Performance Limits for Spectrally Efficient Optical Transmission Techniques in Short-Haul Metro/Access Links, Journal of Lightwave Technology, vol. 38, no. 3, pp. 661-667, 2020.
https://doi.org/10.1109/JLT.2019.2948386

Al-Adwany, M., Yahya, H., Thanoon, M., Hamdoon, H., Saadallah, N., Hamed, A., Simulation and Hardware Implementation of DC-Biased Optical OFDM (DCO-OFDM) for Visible Light Communications, (2020) International Review on Modelling and Simulations (IREMOS), 13 (2), pp. 108-117.
https://doi.org/10.15866/iremos.v13i2.17486

L. E. M. Matheus, A. B. Vieira, L. F. M. Vieira, M. A. M. Vieira, and O. Gnawali, Visible Light Communication: Concepts, Applications and Challenges, IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3204-3237, 2019.
https://doi.org/10.1109/COMST.2019.2913348

A. K. Majumdar, Advanced Free Space Optics (FSO) A Systems Approach. Springer Publishing Company, Incorporated, 2015.
https://doi.org/10.1007/978-1-4939-0918-6

M. Karbalayghareh, F. Miramirkhani, H. B. Eldeeb, R. C. Kizilirmak, S. M. Sait, and M. Uysal, Channel Modelling and Performance Limits of Vehicular Visible Light Communication Systems, IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 6891-6901, 2020.
https://doi.org/10.1109/TVT.2020.2993294

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, LED Based Indoor Visible Light Communications: State of the Art, IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1649-1678, 2015.
https://doi.org/10.1109/COMST.2015.2417576

Y. Almadani et al., Visible Light Communications for Industrial Applications-Challenges and Potentials, Electronics, vol. 9, no. 12, p. 2157, 2020.
https://doi.org/10.3390/electronics9122157

X. Song, M. Niu, and J. Cheng, Error Rate of Subcarrier Intensity Modulations for Wireless Optical Communications, IEEE Communications Letters, vol. 16, no. 4, pp. 540-543, 2012.
https://doi.org/10.1109/LCOMM.2012.021612.112554

X. Tang et al., Underwater Wireless Optical Communication Based on DPSK Modulation and Silicon Photomultiplier, IEEE Access, vol. 8, pp. 204676-204683, 2020.
https://doi.org/10.1109/ACCESS.2020.3037174

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, Using LDPC-Coded Modulation and Coherent Detection for Ultra Highspeed Optical Transmission, Journal of Lightwave Technology, vol. 25, no. 11, pp. 3619-3625, 2007.
https://doi.org/10.1109/JLT.2007.906791

A. H. Gnauck and P. J. Winzer, Optical phase-shift-keyed transmission, Journal of Lightwave Technology, vol. 23, no. 1, pp. 115-130, 2005.
https://doi.org/10.1109/JLT.2004.840357

I. B. Djordjevic and B. Vasic, Multilevel Coding in M-ary DPSK/Differential QAM High-Speed Optical Transmission With Direct Detection, Journal of Lightwave Technology, vol. 24, no. 1, pp. 420-428, 2006.
https://doi.org/10.1109/JLT.2005.860148

J. Bae, A. Abotabl, H. Lin, K. Song, and J. Lee, An overview of channel coding for 5G NR cellular communications, APSIPA Transactions on Signal and Information Processing, vol. 8, no. E17, 2019.
https://doi.org/10.1017/ATSIP.2019.10

3GPP. 5G NR Multiplexing and channel coding [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf

M. A. T. Almahadeen and A. M. Matarneh, Performance assessment of throughput in a 5g system, Jordanian Journal of Computers Information Technology, vol. 6, no. 3, 2020.

M. P. C. Fossorier, Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices, IEEE Transactions On Information Theory, vol. 50, no. 8, pp. 1788-1793, 2004.
https://doi.org/10.1109/TIT.2004.831841

J. He, Z. Li, J. He, and J. Shi, Visible Laser Light Communication Based on LDPC-Coded Multi-Band CAP and Adaptive Modulation, Journal of Lightwave Technology, vol. 37, no. 4, pp. 1207-1213, 2019.
https://doi.org/10.1109/JLT.2018.2889965

Thi Bao Nguyen T, Nguyen Tan T, Lee H. Low-Complexity High-Throughput QC-LDPC Decoder for 5G New Radio Wireless Communication. Electronics. 2021; 10(4):516.
https://doi.org/10.3390/electronics10040516

H. Yuan and P. Kam, On the LLR Metrics for DPSK Modulations Over Two-Symbol Observation Intervals for the Flat Rician Fading Channel, IEEE Transactions on Communications, vol. 63, no. 12, pp. 4950-4963, 2015.
https://doi.org/10.1109/TCOMM.2015.2481888

F. Babich, M. Noschese, A. Soranzo, and F. Vatta, Low complexity rate compatible puncturing patterns design for LDPC codes, Journal of Communications Software and Systems, vol. 14, no. 4, pp. 350-358, 2018.
https://doi.org/10.24138/jcomss.v14i4.639

K. Lee, H. Park, and J. R. Barry, Indoor Channel Characteristics for Visible Light Communications, IEEE Communications Letters, vol. 15, no. 2, 2011.
https://doi.org/10.1109/LCOMM.2011.010411.101945

S. Long, M. A. Khalighi, M. Wolf, S. Bourennane, and Z. Ghassemlooy, Investigating channel frequency selectivity in indoor visible-light communication systems, IET Optoelectronics, vol. 10, no. 3, pp. 80-88, 2015.
https://doi.org/10.1049/iet-opt.2015.0015

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, Simulation of Multipath Impulse Response for Indoor Wireless Optical Channels, IEEE J. Sel. Areas Commun., vol. 11, pp. 367-379, 1993.
https://doi.org/10.1109/49.219552

Z. Ghassemlooy, L. N. Alves, S. Zvánovec, and M.-A. Khalighi, Visible Light Communications Theory and Applications. CRC Press, 2017, pp. 590.
https://doi.org/10.1201/9781315367330

D. Wu, Z. Ghassemlooy, H. L. Minh, S. Rajbhandari, and A. C. Boucouvalas, Improvement of the Transmission Bandwidth for Indoor Optical Wireless Communication Systems Using a Diffused Gaussian Beam, IEEE Communications Letters, vol. 16, no. 8, pp. 1316-1319, 2012.
https://doi.org/10.1109/LCOMM.2012.060812.120803

C. Lomba, R. Valadas, and A. Duarte, Efficient simulation of the impulse response of the indoor wireless optical channel, Int. J. Commun. Syst., vol. 13, pp. 537-549, 2000.
https://doi.org/10.1002/1099-1131(200011/12)13:7/8<537::AID-DAC455>3.0.CO;2-6

A. Al-Kinani, C. Wang, L. Zhou, and W. Zhang, Optical Wireless Communication Channel Measurements and Models, IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 939-1962, 2018.
https://doi.org/10.1109/COMST.2018.2838096

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB®. CRC Press, 2018.
https://doi.org/10.1201/9781315151724

T. Ninacs, B. Matuz, G. Liva, and G. Colavolpe, "Short Non-Binary Low-Density Parity-Check Codes for Phase Noise Channels," IEEE Transactions on Communications, vol. 67, no. 7, pp. 4575-4584, 2019.
https://doi.org/10.1109/TCOMM.2019.2909201


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize