Artificial Intelligence and Statistical Techniques in Short-Term Load Forecasting: a Review
(*) Corresponding author
DOI: https://doi.org/10.15866/iremos.v14i6.21328
Abstract
Electrical utilities depend on short-term demand forecasting to adjust proactively the production and the distribution in anticipation of major variations. This systematic review analyzes 240 works published in scholarly journals between 2000 and 2019 that focus on applying Artificial Intelligence (AI), statistical, and hybrid models to Short-Term Load Forecasting (STLF). This work represents the most comprehensive review of works on this subject to date. A complete analysis of the literature is conducted in order to identify the most popular and accurate techniques as well as existing gaps. The findings show that although Artificial Neural Networks (ANN) continue to be the most commonly used standalone technique, researchers have been exceedingly opting for hybrid combinations of different techniques to leverage the combined advantages of individual methods. The review demonstrates that it is commonly possible with these hybrid combinations to achieve prediction accuracy exceeding 99%. The most successful duration for short-term forecasting has been identified as prediction for a duration of one day at an hourly interval. The review has identified a deficiency in access to datasets needed for training of the models. A significant gap has been identified in researching regions other than Asia, Europe, North America, and Australia.
Copyright © 2021 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
B. Satish, K. S. Swarup, S. Srinivas, and A. H. Rao, Effect of temperature on short term load forecasting using an integrated ANN, Electr. Power Syst. Res., vol. 72, no. 1, pp. 95-101, 2004.
https://doi.org/10.1016/j.epsr.2004.03.006
B. Soudan and A. Darya, Autonomous smart switching control for off-grid hybrid PV/battery/diesel power system, Energy, vol. 211, Nov. 2020.
https://doi.org/10.1016/j.energy.2020.118567
H. S. Hippert, C. E. Pedreira, and R. C. Souza, Neural networks for short-term load forecasting: A review and evaluation, IEEE Trans. Power Syst., vol. 16, no. 1, pp. 44-55, 2001.
https://doi.org/10.1109/59.910780
D. Singh and S. P. Singh, Self organization and learning methods in short term electric load forecasting: A review, Electr. Power Components Syst., vol. 30, no. 10, pp. 1075-1089, 2002.
https://doi.org/10.1080/15325000290085370
K. Metaxiotis, A. Kagiannas, D. Askounis, and J. Psarras, Artificial intelligence in short term electric load forecasting: A state-of-the-art survey for the researcher, Energy Convers. Manag., vol. 44, no. 9, pp. 1525-1534, 2003.
https://doi.org/10.1016/S0196-8904(02)00148-6
J. W. Taylor, L. M. de Menezes, and P. E. McSharry, A comparison of univariate methods for forecasting electricity demand up to a day ahead, Int. J. Forecast., vol. 22, no. 1, pp. 1-16, 2006.
https://doi.org/10.1016/j.ijforecast.2005.06.006
J. W. Taylor and P. E. McSharry, Short-term load forecasting methods: An evaluation based on European data, IEEE Trans. Power Syst., vol. 22, no. 4, pp. 2213-2219, 2007.
https://doi.org/10.1109/TPWRS.2007.907583
M. Q. Raza and Z. Baharudin, A review on short term load forecasting using hybrid neural network techniques,"PECon 2012 - 2012 IEEE Int. Conf. Power Energy, no. December, pp. 846-851, 2012.
https://doi.org/10.1109/PECon.2012.6450336
L. Suganthi and A. A. Samuel, Energy models for demand forecasting - A review, Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1223-1240, 2012.
https://doi.org/10.1016/j.rser.2011.08.014
A. S. Ahmad et al., A review on applications of ANN and SVM for building electrical energy consumption forecasting, Renew. Sustain. Energy Rev., vol. 33, pp. 102-109, 2014.
https://doi.org/10.1016/j.rser.2014.01.069
A. Baliyan, K. Gaurav, and S. Kumar Mishra, A review of short term load forecasting using artificial neural network models, Procedia Comput. Sci., vol. 48, no. C, pp. 121-125, 2015.
https://doi.org/10.1016/j.procs.2015.04.160
T. Hong and S. Fan, Probabilistic electric load forecasting: A tutorial review, Int. J. Forecast., vol. 32, no. 3, pp. 914-938, 2016.
https://doi.org/10.1016/j.ijforecast.2015.11.011
B. Kitchenham and S. Charters, Guidelines for performing systematic literature reviews in software engineering, Tech. report, Ver. 2.3 EBSE Tech. Report. EBSE, 2007.
S. Kouhi and F. Keynia, A new cascade NN based method to short-term load forecast in deregulated electricity market, Energy Convers. Manag., vol. 71, pp. 76-83, 2013.
https://doi.org/10.1016/j.enconman.2013.03.014
N. M. Pindoriya, S. N. Singh, and S. K. Singh, An adaptive wavelet neural network-based energy price forecasting in electricity markets, IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1423-1432, 2008.
https://doi.org/10.1109/TPWRS.2008.922251
P. J. Santos, A. G. Martins, and A. J. Pires, Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems, Int. J. Electr. Power Energy Syst., vol. 29, no. 4, pp. 338-347, 2007.
https://doi.org/10.1016/j.ijepes.2006.09.002
D. Srinivasan, Energy demand prediction using GMDH networks, Neurocomputing, vol. 72, no. 1-3, pp. 625-629, 2008.
https://doi.org/10.1016/j.neucom.2008.08.006
C. Hamzaçebi, Forecasting of Turkey's net electricity energy consumption on sectoral bases, Energy Policy, vol. 35, no. 3, pp. 2009-2016, 2007.
https://doi.org/10.1016/j.enpol.2006.03.014
N. Ding, C. Benoit, G. Foggia, Y. Besanger, and F. Wurtz, Neural network-based model design for short-term load forecast in distribution systems, IEEE Trans. Power Syst., vol. 31, no. 1, pp. 72-81, 2016.
https://doi.org/10.1109/TPWRS.2015.2390132
J. P. S. Catalão, S. J. P. S. Mariano, V. M. F. Mendes, and L. A. F. M. Ferreira, Short-term electricity prices forecasting in a competitive market: A neural network approach, Electr. Power Syst. Res., vol. 77, no. 10, pp. 1297-1304, 2007.
https://doi.org/10.1016/j.epsr.2006.09.022
O. A. S. Carpinteiro, A. J. R. Reis, and A. P. A. Da Silva, A hierarchical neural model in short-term load forecasting, Appl. Soft Comput. J., vol. 4, no. 4, pp. 405-412, 2004.
https://doi.org/10.1016/j.asoc.2004.02.005
S. Kelo and S. Dudul, A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature, Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 1063-1071, 2012.
https://doi.org/10.1016/j.ijepes.2012.06.009
M. Y. Zhai, A new method for short-term load forecasting based on fractal interpretation and wavelet analysis, Int. J. Electr. Power Energy Syst., vol. 69, pp. 241-245, 2015.
https://doi.org/10.1016/j.ijepes.2014.12.087
T. Nengling, J. Stenzel, and W. Hongxiao, Techniques of applying wavelet transform into combined model for short-term load forecasting, Electr. Power Syst. Res., vol. 76, no. 6-7, pp. 525-533, 2006.
https://doi.org/10.1016/j.epsr.2005.07.003
C. Guan, P. B. Luh, L. D. Michel, Y. Wang, and P. B. Friedland, Very short-term load forecasting: Wavelet neural networks with data pre-filtering, IEEE Trans. Power Syst., vol. 28, no. 1, pp. 30-41, 2013.
https://doi.org/10.1109/TPWRS.2012.2197639
G. T. Ribeiro, V. C. Mariani, and L. dos S. Coelho, Enhanced ensemble structures using wavelet neural networks applied to short-term load forecasting, Eng. Appl. Artif. Intell., vol. 82, pp. 272-281, 2019.
https://doi.org/10.1016/j.engappai.2019.03.012
J. Wang, J. Wang, Y. Li, S. Zhu, and J. Zhao, Techniques of applying wavelet de-noising into a combined model for short-term load forecasting, Int. J. Electr. Power Energy Syst., vol. 62, pp. 816-824, 2014.
https://doi.org/10.1016/j.ijepes.2014.05.038
Y. Chen et al., Short-term load forecasting: Similar day-based wavelet neural networks, IEEE Trans. Power Syst., vol. 25, no. 1, pp. 322-330, 2010.
https://doi.org/10.1109/TPWRS.2009.2030426
C. Cecati, J. Kolbusz, P. Rózycki, P. Siano, and B. M. Wilamowski, A Novel RBF Training Algorithm for Short-Term Electric Load Forecasting and Comparative Studies, IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6519-6529, 2015.
https://doi.org/10.1109/TIE.2015.2424399
L. Hernández et al., Improved short-term load forecasting based on two-stage predictions with artificial neural networks in a microgrid environment, Energies, vol. 6, no. 9, pp. 4489-4507, 2013.
https://doi.org/10.3390/en6094489
K. Methaprayoon, W. J. Lee, S. Rasmiddatta, J. R. Liao, and R. J. Ross, Multistage artificial neural network short-term load forecasting engine with front-end weather forecast, IEEE Trans. Ind. Appl., vol. 43, no. 6, pp. 1410-1416, 2007.
https://doi.org/10.1109/TIA.2007.908190
Z. S. H. Chan, H. W. Ngan, A. B. Rad, A. K. David, and N. Kasabov, Short-term ANN load forecasting from limited data using generalization learning strategies, Neurocomputing, vol. 70, no. 1-3, pp. 409-419, 2006.
https://doi.org/10.1016/j.neucom.2005.12.131
S. Arora and J. W. Taylor, Short-term forecasting of anomalous load using rule-based triple seasonal methods, IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3235-3242, 2013.
https://doi.org/10.1109/TPWRS.2013.2252929
R. E. Abdel-Aal, Short-Term Hourly Load Forecasting Using Abductive Networks, IEEE Trans. Power Syst., vol. 19, no. 1, pp. 164-173, 2004.
https://doi.org/10.1109/TPWRS.2003.820695
S. S. S. Hosseini and A. H. Gandomi, Short-term load forecasting of power systems by gene expression programming, Neural Comput. Appl., vol. 21, no. 2, pp. 377-389, 2012.
https://doi.org/10.1007/s00521-010-0444-y
P. Lauret, E. Fock, R. N. Randrianarivony, and J. F. Manicom-Ramsamy, Bayesian neural network approach to short time load forecasting, Energy Convers. Manag., vol. 49, no. 5, pp. 1156-1166, 2008.
https://doi.org/10.1016/j.enconman.2007.09.009
H. S. Hippert and J. W. Taylor, An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting, Neural Networks, vol. 23, no. 3, pp. 386-395, 2010.
https://doi.org/10.1016/j.neunet.2009.11.016
N. Kandil, R. Wamkeue, M. Saad, and S. Georges, An efficient approach for short term load forecasting using artificial neural networks, Int. J. Electr. Power Energy Syst., vol. 28, no. 8, pp. 525-530, 2006.
https://doi.org/10.1016/j.ijepes.2006.02.014
A. Deihimi and H. Showkati, Application of echo state networks in short-term electric load forecasting, Energy, vol. 39, no. 1, pp. 327-340, 2012.
https://doi.org/10.1016/j.energy.2012.01.007
A. S. Khwaja, X. Zhang, A. Anpalagan, and B. Venkatesh, Boosted neural networks for improved short-term electric load forecasting, Electr. Power Syst. Res., vol. 143, pp. 431-437, 2017.
https://doi.org/10.1016/j.epsr.2016.10.067
K. Kalaitzakis, G. S. Stavrakakis, and E. M. Anagnostakis, Short-term load forecasting based on artificial neural networks parallel implementation, Electr. Power Syst. Res., vol. 63, no. 3, pp. 185-196, 2002.
https://doi.org/10.1016/S0378-7796(02)00123-2
S. Fan, L. Chen, and W. J. Lee, Short-term load forecasting using comprehensive combination based on multimeteorological information, IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1460-1466, 2009.
https://doi.org/10.1109/TIA.2009.2023571
W. Charytoniuk and M.-S. Chen, Very Short-Term Load Forecasting Using Artificial Neural Networks, IEEE Trans. Power Syst., vol. 15, no. 1, p. 263, 2000.
https://doi.org/10.1109/59.852131
M. Beccali, M. Cellura, V. Lo Brano, and A. Marvuglia, Forecasting daily urban electric load profiles using artificial neural networks, Energy Convers. Manag., vol. 45, no. 18-19, pp. 2879-2900, 2004.
https://doi.org/10.1016/j.enconman.2004.01.006
A. S. Khwaja, M. Naeem, A. Anpalagan, A. Venetsanopoulos, and B. Venkatesh, Improved short-term load forecasting using bagged neural networks, Electr. Power Syst. Res., vol. 125, pp. 109-115, 2015.
https://doi.org/10.1016/j.epsr.2015.03.027
E. González-Romera, M. Á. Jaramillo-Morán, and D. Carmona-Fernández, Forecasting of the electric energy demand trend and monthly fluctuation with neural networks, Comput. Ind. Eng., vol. 52, no. 3, pp. 336-343, 2007.
https://doi.org/10.1016/j.cie.2006.12.010
N. Amjady, F. Keynia, and H. Zareipour, Short-term load forecast of microgrids by a new bilevel prediction strategy, IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 286-294, 2010.
https://doi.org/10.1109/TSG.2010.2078842
C. Kang, X. Cheng, Q. Xia, Y. Huang, and F. Gao, Novel approach considering load-relative factors in short-term load forecasting, Electr. Power Syst. Res., vol. 70, no. 2, pp. 99-107, 2004.
https://doi.org/10.1016/j.epsr.2003.11.008
A. Dolara, F. Grimaccia, S. Leva, M. Mussetta, and E. Ogliari, A physical hybrid artificial neural network for short term forecasting of PV plant power output, Energies, vol. 8, no. 2, pp. 1138-1153, 2015.
https://doi.org/10.3390/en8021138
P. Li, Y. Li, Q. Xiong, Y. Chai, and Y. Zhang, Application of a hybrid quantized Elman neural network in short-term load forecasting, Int. J. Electr. Power Energy Syst., vol. 55, pp. 749-759, 2014.
https://doi.org/10.1016/j.ijepes.2013.10.020
I. P. Panapakidis, Application of hybrid computational intelligence models in short-term bus load forecasting, Expert Syst. Appl., vol. 54, pp. 105-120, 2016.
https://doi.org/10.1016/j.eswa.2016.01.034
Z. Xiao, S. J. Ye, B. Zhong, and C. X. Sun, BP neural network with rough set for short term load forecasting, Expert Syst. Appl., vol. 36, no. 1, pp. 273-279, 2009.
https://doi.org/10.1016/j.eswa.2007.09.031
S. A. Villalba and C. Á. Bel, Hybrid demand model for load estimation and short term load forecasting in distribution electric systems, IEEE Trans. Power Deliv., vol. 15, no. 2, pp. 764-769, 2000.
https://doi.org/10.1109/61.853017
I. P. Panapakidis, Clustering based day-ahead and hour-ahead bus load forecasting models, Int. J. Electr. Power Energy Syst., vol. 80, pp. 171-178, 2016.
https://doi.org/10.1016/j.ijepes.2016.01.035
A. P. Alves Da Silva and L. S. Moulin, Confidence intervals for neural network based short-term load forecasting, IEEE Trans. Power Syst., vol. 15, no. 4, pp. 1191-1196, 2000.
https://doi.org/10.1109/59.898089
M. Beccali, M. Cellura, V. Lo Brano, and A. Marvuglia, Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area, Renew. Sustain. Energy Rev., vol. 12, no. 8, pp. 2040-2065, 2008.
https://doi.org/10.1016/j.rser.2007.04.010
W. He, Load Forecasting via Deep Neural Networks, Procedia Comput. Sci., vol. 122, pp. 308-314, 2017.
https://doi.org/10.1016/j.procs.2017.11.374
M. Hossain, S. Mekhilef, M. Danesh, L. Olatomiwa, and S. Shamshirband, Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems, J. Clean. Prod., vol. 167, pp. 395-405, 2017.
https://doi.org/10.1016/j.jclepro.2017.08.081
S. Sepasi, E. Reihani, A. M. Howlader, L. R. Roose, and M. M. Matsuura, Very short term load forecasting of a distribution system with high PV penetration, Renew. Energy, vol. 106, pp. 142-148, 2017.
https://doi.org/10.1016/j.renene.2017.01.019
F. Abbas, D. Feng, S. Habib, U. Rahman, A. Rasool, and Z. Yan, Short term residential load forecasting: An improved optimal nonlinear auto regressive (NARX) method with exponential weight decay function, Electron., vol. 7, no. 12, pp. 1-27, 2018.
https://doi.org/10.3390/electronics7120432
B. Yildiz, J. I. Bilbao, J. Dore, and A. B. Sproul, Short-term forecasting of individual household electricity loads with investigating impact of data resolution and forecast horizon, Renew. Energy Environ. Sustain., vol. 3, no. 3, p. 3, 2018.
https://doi.org/10.1051/rees/2018003
P. H. Kuo and C. J. Huang, A high precision artificial neural networks model for short-Term energy load forecasting, Energies, vol. 11, no. 1, pp. 1-13, 2018.
https://doi.org/10.3390/en11010213
Z. Guo, K. Zhou, X. Zhang, and S. Yang, A deep learning model for short-term power load and probability density forecasting, Energy, vol. 160, pp. 1186-1200, 2018.
https://doi.org/10.1016/j.energy.2018.07.090
J. Bedi and D. Toshniwal, Deep learning framework to forecast electricity demand, Appl. Energy, vol. 238, pp. 1312-1326, 2019.
https://doi.org/10.1016/j.apenergy.2019.01.113
Y. Yang, W. Hong, and S. Li, Deep ensemble learning based probabilistic load forecasting in smart grids, Energy, vol. 189, p. 116324, 2019.
https://doi.org/10.1016/j.energy.2019.116324
A. Safdarian, M. Fotuhi-Firuzabad, and M. Lehtonen, A stochastic framework for short-term operation of a distribution company, IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4712-4721, 2013.
https://doi.org/10.1109/TPWRS.2013.2278076
V. S. Kodogiannis and E. M. Anagnostakis, Soft computing based techniques for short-term load forecasting, Fuzzy Sets Syst., vol. 128, no. 3, pp. 413-426, 2002.
https://doi.org/10.1016/S0165-0114(01)00076-8
P. A. Mastorocostas, J. B. Theocharis, and V. S. Petridis, A constrained orthogonal least-squares method for generating TSK fuzzy models: Application to short-term load forecasting, Fuzzy Sets Syst., vol. 118, no. 2, pp. 215-233, 2001.
https://doi.org/10.1016/S0165-0114(98)00344-3
J. Wang, R. Jia, W. Zhao, J. Wu, and Y. Dong, Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting, Chaos, Solitons and Fractals, vol. 45, no. 9-10, pp. 1277-1287, 2012.
https://doi.org/10.1016/j.chaos.2012.06.009
K. Afshar and N. Bigdeli, Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis (SSA), Energy, vol. 36, no. 5, pp. 2620-2627, 2011.
https://doi.org/10.1016/j.energy.2011.02.003
A. E. Clements, A. S. Hurn, and Z. Li, Forecasting day-ahead electricity load using a multiple equation time series approach, Eur. J. Oper. Res., vol. 251, no. 2, pp. 522-530, 2016.
https://doi.org/10.1016/j.ejor.2015.12.030
L. J. Soares and L. R. Souza, Forecasting electricity demand using generalized long memory, Int. J. Forecast., vol. 22, no. 1, pp. 17-28, 2006.
https://doi.org/10.1016/j.ijforecast.2005.09.004
N. Liu, V. Babushkin, and A. Afshari, Short-Term Forecasting of Temperature Driven Electricity Load Using Time Series and Neural Network Model, J. Clean Energy Technol., vol. 2, no. 4, pp. 327-331, 2014.
https://doi.org/10.7763/JOCET.2014.V2.149
N. Amjady, Short-term hourly load forecasting using time-series modeling with peak load estimation capability, IEEE Trans. Power Syst., vol. 16, no. 4, pp. 798-805, 2001.
https://doi.org/10.1109/59.962429
E. Paparoditis and T. Sapatinas, Short-Term Load Forecasting: The Similar Shape Functional Time Series Predictor, IEEE Trans. Power Syst., vol. 28, no. 4, p. 22, 2012.
https://doi.org/10.1109/TPWRS.2013.2272326
M. Espinoza, C. Joye, R. Belmans, and B. De Moor, Short-term load forecasting, profile identification, and customer segmentation: A methodology based on periodic time series, IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1622-1630, 2005.
https://doi.org/10.1109/TPWRS.2005.852123
R. E. De Grande, A. Boukerche, and R. Alkharboush, Time Series-Oriented Load Prediction Model and Migration Policies for Distributed Simulation Systems, IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 1, pp. 215-229, 2017.
https://doi.org/10.1109/TPDS.2016.2552174
C. García-Ascanio and C. Maté, Electric power demand forecasting using interval time series: A comparison between VAR and iMLP, Energy Policy, vol. 38, no. 2, pp. 715-725, 2010.
https://doi.org/10.1016/j.enpol.2009.10.007
D. H. Vu, K. M. Muttaqi, A. P. Agalgaonkar, and A. Bouzerdoum, Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment, Appl. Energy, vol. 205, pp. 790-801, 2017.
https://doi.org/10.1016/j.apenergy.2017.08.135
H. Sheng, J. Xiao, Y. Cheng, Q. Ni, and S. Wang, Short-Term Solar Power Forecasting Based on Weighted Gaussian Process Regression, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 300-308, 2018.
https://doi.org/10.1109/TIE.2017.2714127
D. W. van der Meer, M. Shepero, A. Svensson, J. Widén, and J. Munkhammar, Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes, Appl. Energy, vol. 213, pp. 195-207, 2018.
https://doi.org/10.1016/j.apenergy.2017.12.104
J. Cordova, L. M. K. Sriram, A. Kocatepe, Y. Zhou, E. E. Ozguven, and R. Arghandeh, Combined Electricity and Traffic Short-Term Load Forecasting Using Bundled Causality Engine, IEEE Trans. Intell. Transp. Syst., vol. 20, no. 9, pp. 3448-3458, 2019.
https://doi.org/10.1109/TITS.2018.2876871
A. M. Al-Kandari, S. A. Soliman, and M. E. El-Hawary, Fuzzy short-term electric load forecasting, Int. J. Electr. Power Energy Syst., vol. 26, no. 2, pp. 111-122, 2004.
https://doi.org/10.1016/S0142-0615(03)00069-3
S. Chenthur Pandian, K. Duraiswamy, C. C. A. Rajan, and N. Kanagaraj, Fuzzy approach for short term load forecasting, Electr. Power Syst. Res., vol. 76, no. 6-7, pp. 541-548, 2006.
https://doi.org/10.1016/j.epsr.2005.09.018
M. Tamimi and R. Egbert, Short term electric load forecasting via fuzzy neural collaboration, Electr. Power Syst. Res., vol. 56, no. 3, pp. 243-248, 2000.
https://doi.org/10.1016/S0378-7796(00)00123-1
R. H. Liang and C. C. Cheng, Short-term load forecasting by a neuro-fuzzy based approach, Int. J. Electr. Power Energy Syst., vol. 24, no. 2, pp. 103-111, 2002.
https://doi.org/10.1016/S0142-0615(01)00021-7
G. Zahedi, S. Azizi, A. Bahadori, A. Elkamel, and S. R. Wan Alwi, Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province - Canada, Energy, vol. 49, no. 1, pp. 323-328, 2013.
https://doi.org/10.1016/j.energy.2012.10.019
R. Mamlook, O. Badran, and E. Abdulhadi, A fuzzy inference model for short-term load forecasting, Energy Policy, vol. 37, no. 4, pp. 1239-1248, 2009.
https://doi.org/10.1016/j.enpol.2008.10.051
S. E. Papadakis, J. B. Theocharis, and A. G. Bakirtzis, A load curve based fuzzy modeling technique for short-term load forecasting, Fuzzy Sets Syst., vol. 135, no. 2, pp. 279-303, 2003.
https://doi.org/10.1016/S0165-0114(02)00211-7
S. J. Huang and K. R. Shih, Application of a fuzzy model for short-term load forecast with group method of data handling enhancement, Int. J. Electr. Power Energy Syst., vol. 24, no. 8, pp. 631-638, 2002.
https://doi.org/10.1016/S0142-0615(01)00081-3
H. Y. Yang, H. Ye, G. Wang, J. Khan, and T. Hu, Fuzzy neural very-short-term load forecasting based on chaotic dynamics reconstruction, Chaos, Solitons and Fractals, vol. 29, no. 2, pp. 462-469, 2006.
https://doi.org/10.1016/j.chaos.2005.08.095
S. Kucukali and K. Baris, Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach, Energy Policy, vol. 38, no. 5, pp. 2438-2445, 2010.
https://doi.org/10.1016/j.enpol.2009.12.037
R. Efendi, Z. Ismail, and M. M. Deris, A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand, Appl. Soft Comput. J., vol. 28, pp. 422-430, 2015.
https://doi.org/10.1016/j.asoc.2014.11.043
M. Karimi, H. Karami, M. Gholami, H. Khatibzadehazad, and N. Moslemi, Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method, Energy, vol. 144, pp. 928-940, 2018.
https://doi.org/10.1016/j.energy.2017.12.083
S. S. Pappas et al., Electricity demand load forecasting of the Hellenic power system using an ARMA model, Electr. Power Syst. Res., vol. 80, no. 3, pp. 256-264, 2010.
https://doi.org/10.1016/j.epsr.2009.09.006
J. W. Taylor, An evaluation of methods for very short-term load forecasting using minute-by-minute British data, Int. J. Forecast., vol. 24, no. 4, pp. 645-658, 2008.
https://doi.org/10.1016/j.ijforecast.2008.07.007
A. K. Topalli, I. Erkmen, and I. Topalli, Intelligent short-term load forecasting in Turkey, Int. J. Electr. Power Energy Syst., vol. 28, no. 7, pp. 437-447, 2006.
https://doi.org/10.1016/j.ijepes.2006.02.004
Y. Wang, J. Wang, G. Zhao, and Y. Dong, Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China, Energy Policy, vol. 48, pp. 284-294, 2012.
https://doi.org/10.1016/j.enpol.2012.05.026
C. M. Lee and C. N. Ko, Short-term load forecasting using lifting scheme and ARIMA models, Expert Syst. Appl., vol. 38, no. 5, pp. 5902-5911, 2011.
https://doi.org/10.1016/j.eswa.2010.11.033
M. Matijaš, J. A. K. Suykens, and S. Krajcar, Load forecasting using a multivariate meta-learning system, Expert Syst. Appl., vol. 40, no. 11, pp. 4427-4437, 2013.
https://doi.org/10.1016/j.eswa.2013.01.047
J. W. Taylor, Short-term electricity demand forecasting using double seasonal exponential smoothing, J. Oper. Res. Soc., vol. 54, no. 8, pp. 799-805, 2003.
https://doi.org/10.1057/palgrave.jors.2601589
A. Tarsitano and I. L. Amerise, Short-term load forecasting using a two-stage sarimax model, Energy, vol. 133, pp. 108-114, 2017.
https://doi.org/10.1016/j.energy.2017.05.126
N. Elamin and M. Fukushige, Modeling and forecasting hourly electricity demand by SARIMAX with interactions, Energy, vol. 165, pp. 257-268, 2018.
https://doi.org/10.1016/j.energy.2018.09.157
C. Zhou and X. Chen, Predicting energy consumption: A multiple decomposition-ensemble approach, Energy, vol. 189, p. 116045, 2019.
https://doi.org/10.1016/j.energy.2019.116045
E. Almeshaiei and H. Soltan, A methodology for Electric Power Load Forecasting, Alexandria Eng. J., vol. 50, no. 2, pp. 137-144, 2011.
https://doi.org/10.1016/j.aej.2011.01.015
J. W. Taylor, Short-term load forecasting with exponentially weighted methods, IEEE Trans. Power Syst., vol. 27, no. 1, pp. 458-464, 2012.
https://doi.org/10.1109/TPWRS.2011.2161780
B. A. Hoverstad, A. Tidemann, H. Langseth, and P. Ozturk, Short-Term Load Forecasting With Seasonal Decomposition Using Evolution for Parameter Tuning, IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1904-1913, 2015.
https://doi.org/10.1109/TSG.2015.2395822
X. Zhang and J. Wang, A novel decomposition‐ensemble model for forecasting short‐term load‐time series with multiple seasonal patterns, Appl. Soft Comput. J., vol. 65, pp. 478-494, 2018.
https://doi.org/10.1016/j.asoc.2018.01.017
G. D. Li, C. H. Wang, S. Masuda, and M. Nagai, A research on short term load forecasting problem applying improved grey dynamic model, Int. J. Electr. Power Energy Syst., vol. 33, no. 4, pp. 809-816, 2011.
https://doi.org/10.1016/j.ijepes.2010.11.005
M. Jin, X. Zhou, Z. M. Zhang, and M. M. Tentzeris, Short-term power load forecasting using grey correlation contest modeling, Expert Syst. Appl., vol. 39, no. 1, pp. 773-779, 2012.
https://doi.org/10.1016/j.eswa.2011.07.072
K. Li and T. Zhang, Forecasting electricity consumption using an improved grey prediction model, Inf., vol. 9, no. 8, pp. 1-18, 2018.
https://doi.org/10.3390/info9080204
Q. Wang, S. Li, and R. Li, Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques, Energy, vol. 161, pp. 821-831, 2018.
https://doi.org/10.1016/j.energy.2018.07.168
C. Guan, P. B. Luh, L. D. Michel, and Z. Chi, Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation, IEEE Trans. Power Syst., vol. 28, no. 4, pp. 3806-3817, 2013.
https://doi.org/10.1109/TPWRS.2013.2264488
H. M. Al-Hamadi and S. A. Soliman, Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model, Electr. Power Syst. Res., vol. 68, no. 1, pp. 47-59, 2004.
https://doi.org/10.1016/S0378-7796(03)00150-0
C. M. Huang, C. J. Huang, and M. L. Wang, A particle swarm optimization to identifying the ARMAX model for short-term load forecasting, IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1126-1133, 2005.
https://doi.org/10.1109/TPWRS.2005.846106
M. El-Telbany and F. El-Karmi, Short-term forecasting of Jordanian electricity demand using particle swarm optimization, Electr. Power Syst. Res., vol. 78, no. 3, pp. 425-433, 2008.
https://doi.org/10.1016/j.epsr.2007.03.011
O. A. S. Carpinteiro and A. P. Alves Da Silva, A hierarchical self-organizing map model in short-term load forecasting, J. Intell. Robot. Syst. Theory Appl., vol. 31, no. 1-3, pp. 105-113, 2001.
M. López, S. Valero, C. Senabre, J. Aparicio, and A. Gabaldon, Application of SOM neural networks to short-term load forecasting: The Spanish electricity market case study, Electr. Power Syst. Res., vol. 91, pp. 18-27, 2012.
https://doi.org/10.1016/j.epsr.2012.04.009
H. Mao, X. J. Zeng, G. Leng, Y. J. Zhai, and J. A. Keane, Short-term and midterm load forecasting using a bilevel optimization model, IEEE Trans. Power Syst., vol. 24, no. 2, pp. 1080-1090, 2009.
https://doi.org/10.1109/TPWRS.2009.2016609
M. D. Toksari, Estimating the net electricity energy generation and demand using the ant colony optimization approach: Case of Turkey, Energy Policy, vol. 37, no. 3, pp. 1181-1187, 2009.
https://doi.org/10.1016/j.enpol.2008.11.017
S. H. Ling, F. H. F. Leung, H. K. Lam, Y. S. Lee, and P. K. S. Tam, A novel genetic-algorithm-based neural network for short-term load forecasting, IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 793-799, 2003.
https://doi.org/10.1109/TIE.2003.814869
K. Nose-Filho, A. D. P. Lotufo, and C. R. Minussi, Short-term multinodal load forecasting using a modified general regression neural network, IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2862-2869, 2011.
https://doi.org/10.1109/TPWRD.2011.2166566
M. Alamaniotis, A. Ikonomopoulos, and L. H. Tsoukalas, Evolutionary multiobjective optimization of kernel-based very-short-term load forecasting, IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1477-1484, 2012.
https://doi.org/10.1109/TPWRS.2012.2184308
J. M. Vilar, R. Cao, and G. Aneiros, Forecasting next-day electricity demand and price using nonparametric functional methods, Int. J. Electr. Power Energy Syst., vol. 39, no. 1, pp. 48-55, 2012.
https://doi.org/10.1016/j.ijepes.2012.01.004
J. R. Cancelo, A. Espasa, and R. Grafe, Forecasting the electricity load from one day to one week ahead for the Spanish system operator, Int. J. Forecast., vol. 24, no. 4, pp. 588-602, 2008.
https://doi.org/10.1016/j.ijforecast.2008.07.005
N. Charlton and C. Singleton, A refined parametric model for short term load forecasting, Int. J. Forecast., vol. 30, no. 2, pp. 364-368, 2014.
https://doi.org/10.1016/j.ijforecast.2013.07.003
M. Zamo, O. Mestre, P. Arbogast, and O. Pannekoucke, A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: Deterministic forecast of hourly production, Sol. Energy, vol. 105, pp. 792-803, 2014.
https://doi.org/10.1016/j.solener.2013.12.006
C. A. Maia and M. M. Gonçalves, A methodology for short-term electric load forecasting based on specialized recursive digital filters, Comput. Ind. Eng., vol. 57, no. 3, pp. 724-731, 2009.
https://doi.org/10.1016/j.cie.2009.01.018
L. F. Amaral, R. C. Souza, and M. Stevenson, A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting, Int. J. Forecast., vol. 24, no. 4, pp. 603-615, 2008.
https://doi.org/10.1016/j.ijforecast.2008.08.006
L. J. Soares and M. C. Medeiros, Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data, Int. J. Forecast., vol. 24, no. 4, pp. 630-644, 2008.
https://doi.org/10.1016/j.ijforecast.2008.08.003
S. Ružić, A. Vučković, and N. Nikolić, Weather Sensitive Method for Short Term Load Forecasting in Electric Power Utility of Serbia, IEEE Trans. Power Syst., vol. 18, no. 4, pp. 1581-1586, 2003.
https://doi.org/10.1109/TPWRS.2003.811172
K. Bin Song, Y. S. Baek, D. H. Hong, and G. Jang, Short-term load forecasting for the holidays using fuzzy linear regression method, IEEE Trans. Power Syst., vol. 20, no. 1, pp. 96-101, 2005.
https://doi.org/10.1109/TPWRS.2004.835632
G. Dudek, Pattern-based local linear regression models for short-term load forecasting, Electr. Power Syst. Res., vol. 130, pp. 139-147, 2016.
https://doi.org/10.1016/j.epsr.2015.09.001
J. Yang and J. Stenzel, Short-term load forecasting with increment regression tree, Electr. Power Syst. Res., vol. 76, no. 9-10, pp. 880-888, 2006.
https://doi.org/10.1016/j.epsr.2005.11.007
S. Fan and R. J. Hyndman, Short-term load forecasting based on a semi-parametric additive model, IEEE Trans. Power Syst., vol. 27, no. 1, pp. 134-141, 2012.
https://doi.org/10.1109/TPWRS.2011.2162082
N. J. Johannesen, M. Kolhe, and M. Goodwin, Relative evaluation of regression tools for urban area electrical energy demand forecasting, J. Clean. Prod., vol. 218, pp. 555-564, 2019.
https://doi.org/10.1016/j.jclepro.2019.01.108
Y. Yang, S. Li, W. Li, and M. Qu, Power load probability density forecasting using Gaussian process quantile regression, Appl. Energy, vol. 213, pp. 499-509, 2018.
https://doi.org/10.1016/j.apenergy.2017.11.035
X. Fu, X. J. Zeng, P. Feng, and X. Cai, Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China, Energy, vol. 165, pp. 76-89, 2018.
https://doi.org/10.1016/j.energy.2018.09.156
K. Nagbe, J. Cugliari, and J. Jacques, Short-term electricity demand forecasting using a functional state space model, Energies, vol. 11, no. 5, pp. 1-24, 2018.
https://doi.org/10.3390/en11051120
M. E. Lebotsa, C. Sigauke, A. Bere, R. Fildes, and J. E. Boylan, Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem, Appl. Energy, vol. 222, pp. 104-118, 2018.
https://doi.org/10.1016/j.apenergy.2018.03.155
B. Uniejewski, G. Marcjasz, and R. Weron, Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO, Int. J. Forecast., vol. 35, no. 4, pp. 1533-1547, 2019.
https://doi.org/10.1016/j.ijforecast.2019.02.001
Ó. Trull, J. C. García-Díaz, and A. Troncoso, Application of discrete-interval moving seasonalities to Spanish electricity demand forecasting during easter, Energies, vol. 12, no. 6, pp. 1-16, 2019.
https://doi.org/10.3390/en12061083
Y. Wang and J. M. Bielicki, Acclimation and the response of hourly electricity loads to meteorological variables, Energy, vol. 142, pp. 473-485, 2018.
https://doi.org/10.1016/j.energy.2017.10.037
P. Alipour, S. Mukherjee, and R. Nateghi, Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region, Energy, vol. 185, pp. 1143-1153, 2019.
https://doi.org/10.1016/j.energy.2019.07.074
K. Kavaklioglu, Modeling and prediction of Turkey's electricity consumption using Support Vector Regression, Appl. Energy, vol. 88, no. 1, pp. 368-375, 2011.
https://doi.org/10.1016/j.apenergy.2010.07.021
W. C. Hong, Electric load forecasting by support vector model, Appl. Math. Model., vol. 33, no. 5, pp. 2444-2454, 2009.
https://doi.org/10.1016/j.apm.2008.07.010
G. F. Fan, L. L. Peng, W. C. Hong, and F. Sun, Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression, Neurocomputing, vol. 173, pp. 958-970, 2016.
https://doi.org/10.1016/j.neucom.2015.08.051
J. Wang, W. Zhu, W. Zhang, and D. Sun, A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand, Energy Policy, vol. 37, no. 11, pp. 4901-4909, 2009.
https://doi.org/10.1016/j.enpol.2009.06.046
D. Niu, Y. Wang, and D. D. Wu, Power load forecasting using support vector machine and ant colony optimization, Expert Syst. Appl., vol. 37, no. 3, pp. 2531-2539, 2010.
https://doi.org/10.1016/j.eswa.2009.08.019
Y. Ren, P. N. Suganthan, N. Srikanth, and G. Amaratunga, Random vector functional link network for short-term electricity load demand forecasting, Inf. Sci. (Ny)., vol. 367-368, pp. 1078-1093, 2016.
https://doi.org/10.1016/j.ins.2015.11.039
Z. Hu, Y. Bao, T. Xiong, and R. Chiong, Hybrid filter-wrapper feature selection for short-term load forecasting, Eng. Appl. Artif. Intell., vol. 40, pp. 17-27, 2015.
https://doi.org/10.1016/j.engappai.2014.12.014
Y. Li, J. Che, and Y. Yang, Subsampled support vector regression ensemble for short term electric load forecasting, Energy, vol. 164, pp. 160-170, 2018.
https://doi.org/10.1016/j.energy.2018.08.169
A. Afshari and L. A. Friedrich, Inverse modeling of the urban energy system using hourly electricity demand and weather measurements, Part 1: Black-box model, Energy Build., vol. 157, pp. 126-138, 2017.
https://doi.org/10.1016/j.enbuild.2017.01.053
B. P. Hayes, J. K. Gruber, and M. Prodanovic, Multi-nodal short-term energy forecasting using smart meter data, IET Gener. Transm. Distrib., vol. 12, no. 12, pp. 2988-2994, 2018.
https://doi.org/10.1049/iet-gtd.2017.1599
K. Chapagain and S. Kittipiyakul, Performance analysis of short-term electricity demand with atmospheric variables, Energies, vol. 11, no. 4, pp. 1-34, 2018.
https://doi.org/10.3390/en11040818
D. X. Niu, H. F. Shi, and D. D. Wu, Short-term load forecasting using bayesian neural networks learned by Hybrid Monte Carlo algorithm, Appl. Soft Comput. J., vol. 12, no. 6, pp. 1822-1827, 2012.
https://doi.org/10.1016/j.asoc.2011.07.001
D. K. Chaturvedi, M. Mohan, R. K. Singh, and P. K. Kalra, Improved generalized neuron model for short-term load forecasting, Soft Comput., vol. 8, no. 1, pp. 10-18, 2003.
https://doi.org/10.1007/s00500-002-0241-3
G. Cervone, L. Clemente-Harding, S. Alessandrini, and L. Delle Monache, Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble, Renew. Energy, vol. 108, pp. 274-286, 2017.
https://doi.org/10.1016/j.renene.2017.02.052
A. Kheirkhah, A. Azadeh, M. Saberi, A. Azaron, and H. Shakouri, Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis, Comput. Ind. Eng., vol. 64, no. 1, pp. 425-441, 2013.
https://doi.org/10.1016/j.cie.2012.09.017
Y. T. Chae, R. Horesh, Y. Hwang, and Y. M. Lee, Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings, Energy Build., vol. 111, pp. 184-194, 2016.
https://doi.org/10.1016/j.enbuild.2015.11.045
A. Anand and L. Suganthi, Hybrid GA-PSO optimization of Artificial Neural Network for forecasting electricity demand, Energies, vol. 11, no. 4, pp. 1-15, 2018.
https://doi.org/10.3390/en11040728
A. Ahmad, N. Javaid, A. Mateen, M. Awais, and Z. A. Khan, Short-Term load forecasting in smart grids: An intelligent modular approach, Energies, vol. 12, no. 1, pp. 1-21, 2019.
https://doi.org/10.3390/en12010164
J. L. Casteleiro-Roca et al., Short-term energy demand forecast in hotels using hybrid intelligent modeling, Sensors (Switzerland), vol. 19, no. 11, pp. 1-18, 2019.
https://doi.org/10.3390/s19112485
M. Ghofrani, M. Ghayekhloo, A. Arabali, and A. Ghayekhloo, A hybrid short-term load forecasting with a new input selection framework, Energy, vol. 81, pp. 777-786, 2015.
https://doi.org/10.1016/j.energy.2015.01.028
J. Kim, J. Moon, E. Hwang, and P. Kang, Recurrent inception convolution neural network for multi short-term load forecasting, Energy Build., vol. 194, pp. 328-341, 2019.
https://doi.org/10.1016/j.enbuild.2019.04.034
A. S. Pandey, D. Singh, and S. K. Sinha, Intelligent hybrid wavelet models for short-term load forecasting, IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1266-1273, 2010.
https://doi.org/10.1109/TPWRS.2010.2042471
A. T. Eseye, M. Lehtonen, T. Tukia, S. Uimonen, and R. John Millar, Machine learning based integrated feature selection approach for improved electricity demand forecasting in decentralized energy systems, IEEE Access, vol. 7, pp. 91463-91475, 2019.
https://doi.org/10.1109/ACCESS.2019.2924685
K. Yan, X. Wang, Y. Du, N. Jin, H. Huang, and H. Zhou, Multi-step short-term power consumption forecasting with a hybrid deep learning strategy, Energies, vol. 11, no. 11, pp. 1-15, 2018.
https://doi.org/10.3390/en11113089
H. J. Sadaei, P. C. de Lima e Silva, F. G. Guimarães, and M. H. Lee, Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series, Energy, vol. 175, pp. 365-377, 2019.
https://doi.org/10.1016/j.energy.2019.03.081
S. M. Kelo and S. V. Dudul, Short-term Maharashtra state electrical power load prediction with special emphasis on seasonal changes using a novel focused time lagged recurrent neural n
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize