Open Access Open Access  Restricted Access Subscription or Fee Access

Complementary Metal Oxide Semiconductor Digitally Controlled Passive Phase Shifter Circuit for Bearing Angle Control in Multiple Antenna System


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v15i4.21040

Abstract


A Complementary Metal Oxide Semiconductor (CMOS) digitally controller passive phase shifter circuit for bearing angle control in multiple antenna systems with the changes of the frequency angle or phase shift by using the passive component is presented. The circuit has been designed by using TSMC 0.18 um CMOS technology on the Advanced Design System (ADS) software. This project aims to look for multiple phase transition angles on the same circuit by using the switch in order to get different shifter pattern selectors in series with a digital phase tuning phase adapted using digital capacitors and inductors loading a lumped element transmission line. The phase shifter has a range of 360° with 5.6° resolution at 8-11 GHz frequency band. These CMOS phase shifter characteristics are attractive for multiple antennae and commercial phased array communication systems where cost, size, weight, power and high linearity are required.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Bearing Angle; CMOS; Digital Control; Multiple Antenna System; Phase Shifter

Full Text:

PDF


References


J. Park, J. Gwanghyeon and H. Songcheol, A Ka-band variable-gain phase shifter with multiple vector generators. IEEE Transactions on Circuits and Systems II: Express Briefs 68, no. 6, 2020.
https://doi.org/10.1109/TCSII.2020.3046523

Z. Li, Q. Jia and Z. Yiqi, An X-band 5-bit active phase shifter based on a novel vector-sum technique in 0.18μm SiGe BiCMOS. IEEE Transactions on Circuits and Systems II: Express Briefs 68, no. 6, 2020.
https://doi.org/10.1109/TCSII.2020.3038068

Noori, A., Kamal, A., Mohammed, S., Humada, A., Design and Implementation of Biquad Filters Using CMOS Circuit Based Active Elements, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 141-147.
https://doi.org/10.15866/iree.v14i2.16373

Z. Li, Q Jia, W. Yuxin, W. Zeyuan, Y. Liyan, and Z. Yiqi, A 6 to 12 GHz wideband analog voltage-controlled phase shifter with IL compensation architecture. Microwave and Optical Technology Letters 63, no. 9 2021.
https://doi.org/10.1002/mop.32911

Jobaneh, H., The Design of an Ultra-Low-Power 7.5 GHz LNA in 0.13µm CMOS Technology with Cascode and Common-Source Topology, (2020) International Review of Electrical Engineering (IREE), 15 (4), pp. 336-343.
https://doi.org/10.15866/iree.v15i4.18226

Elwy, Omar, Somia H. Rashad, Lobna A. Said, and Ahmed G. Radwan. Comparison between three approximation methods on oscillator circuits. Microelectronics Journal 81 2018.
https://doi.org/10.1016/j.mejo.2018.07.006

S. Shamsadini. Design of Millimeter-Wave Phase Shifters and Power Combiners in CMOS Technology. 2019.
https://doi.org/10.7939/r3-amr7-te41

K. Madhavi, A. Kumar, and S. Aniruddhan. A 4-bit Bidirectional Phase Shifter for 3GHz S-Band Applications. In 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 745-748. IEEE, 2021.
https://doi.org/10.1109/MWSCAS47672.2021.9531727

J. Hamhee, and K. W. Kobayashi. A high linearity+ 44.5-dBm IP3 C-band 6-bit digital phase shifter using SOI technology for phased array applications. IEEE microwave and wireless components letters 29, no. 11. 2019.
https://doi.org/10.1109/LMWC.2019.2940440

T. Golod, A. Razmik, M. Hovhannisyan, M. Olena, V. Kapran, V. Dremov, V. S. Stolyarov, and V. M. Krasnov. Reconfigurable josephson phase shifter. Nano Letters 21, no. 12. 2021.
https://doi.org/10.1021/acs.nanolett.1c01366

K. Ilker, E. Ozeren, A. Burak, O. Ceylan, and Y. Gurbuz. A phase-calibration method for vector-sum phase shifters using a self-generated LUT. IEEE Transactions on Circuits and Systems I: Regular Papers 66, no. 4. 2019.
https://doi.org/10.1109/TCSI.2018.2885172

C. Jiahui, Shouxian Mou, K. Ma, and F. Meng. A 3-6-GHz wideband compact 6-Bit phase shifter in 0.5-μm GaAs technology. IEEE Microwave and Wireless Components Letters 30, no. 8. 2020.
https://doi.org/10.1109/LMWC.2020.3007836

J. Xia and S. Boumaiza, Digitally Assisted 28 GHz Active Phase Shifter With 0.1 dB/0.5° RMS Magnitude/Phase Errors and Enhanced Linearity, in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp. 914-918, June 2019.
https://doi.org/10.1109/TCSII.2018.2872865

Y. Xing et al., Digitally Controlled Phase Shifter Using an SOI Slot Waveguide With Liquid Crystal Infiltration, in IEEE Photonics Technology Letters, vol. 27, no. 12, pp. 1269-1272, 15 June15, 2015.
https://doi.org/10.1109/LPT.2015.2416438

A. Ribeiro, S. Declercq, U. Khan, M. Wang, L. V. Iseghem and W. Bogaerts, Column-Row Addressing of Thermo-Optic Phase Shifters for Controlling Large Silicon Photonic Circuits, in IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 5, pp. 1-8, Sept.-Oct. 2020, Art no. 6100708.
https://doi.org/10.1109/JSTQE.2020.2975669

A. H. A. Razak, A. Zayegh and R. K. Begg, Design and Simulation of a Wireless DAQ-IC for Foot Plantar Pressure, 2012 Third International Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, 2012, pp. 713-717.
https://doi.org/10.1109/ISMS.2012.20

A. H. A. Razak, M. I. A. Shamsuddin, M. F. M. Idros, A. K. Halim, A. Ahmad, and S. A. M. Al Junid, Design of 5.8 GHz Integrated Antenna on 180nm Complementary Metal Oxide Semiconductor (CMOS) Technology, IOP Conference Series: Materials Science and Engineering, vol. 341, p. 012015, Mar. 2018.
https://doi.org/10.1088/1757-899X/341/1/012015

W.M.I.W. Zain, S.A.M. Al Junid, M.F.M. Idros, A.H.A. Razak, F.N. Osman, A.K. Halim, and M.A. Haron, Simulation study of memristor aided logic (MAGIC) based on CMOS NOR gate, Bulletin of Electrical Engineering and Informatics, 9(5), pp.2134-2140. 2020.
https://doi.org/10.11591/eei.v9i5.2367

A. H. A. Razak, A. Zayegh, R. K. Begg, M. Seyedi and D. T. Lai, BFSK modulation to compare intra-body communication methods for foot plantar pressure measurement, 2013 7th IEEE GCC Conference and Exhibition (GCC), Doha, 2013, pp. 172-176.
https://doi.org/10.1109/IEEEGCC.2013.6705770

W. M. H. W. M. Sharif, M. F. M. Idros, S. A. M. Al-Junid, F. N. Osman, A. H. A. Razak, A. K. Halim, & M. A. Harun, "Hybrid memristor-CMOS implementation of logic gates design using LTSpice. International Journal of Electrical and Computer Engineering, 11(3), 2021.
https://doi.org/10.11591/ijece.v11i3.pp2003-2010

S. A. M. Al Junid, M. F. M. Idros, A. H. A. Razak, F. N. Osman, & N. M. Tahir. Parallel processing cell score design of linear gap penalty smith-waterman algorithm. In 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA) (pp. 299-302). 2017.
https://doi.org/10.1109/CSPA.2017.8064969

R. Xuexuan, and C. Hou Chan. A circularly polarized differentially fed transmission-line-excited magnetoelectric dipole antenna array for 5G applications. IEEE Transactions on Antennas and Propagation 67, no. 3. 2019.
https://doi.org/10.1109/TAP.2019.2893197

A. M. Taberkit, A. Guen-Bouazza, B. Bouazza, Modeling and Simulation of Biaxial Strained P-MOSFETs: Application to a Single and Dual Channel Heterostructure, International Journal of Electrical & Computer Engineering (IJECE) (2088-8708), 8(1). 2018.
https://doi.org/10.11591/ijece.v8i1.pp421-428

A.S.B.A. Hamid, S.A.M. Al Junid,M.F.M. Idros, A.H.A. Razak, F.N. Osman, M.A. Haron, Simulation study of memristor-based digital logic circuit using stateful logic, International Journal of Emerging Trends in Engineering Research, 8 (8), art. no. 95, pp. 4632-4639. 2020.
https://doi.org/10.30534/ijeter/2020/95882020

M. Keote, P.T. Karule, Design and Implementation of Low Power Multiplier Using Proposed Two Phase Clocked Adiabatic Static CMOS Logic Circuit, International Journal of Electrical & Computer Engineering (IJECE) (2088-8708), 8. 2018.
https://doi.org/10.11591/ijece.v8i6.pp4959-4971

J.J. Patel, A.P. Naik, Design and implementation of 4-bit binary weighted current steering DAC, International Journal of Electrical & Computer Engineering (IJECE) (2088-8708), 10(6). 2020.
https://doi.org/10.11591/ijece.v10i6.pp5642-5649

K.K Abdalla, New Two Simple Sinusoidal Generators with Four 45o Phase Shifted Voltage Outputs Using Single FDCCII and Grounded Components, International Journal of Electrical and Computer Engineering (IJECE) 8(6), 5080. 2018.
https://doi.org/10.11591/ijece.v8i6.pp5080-5088

N. Angeli and K. Hofmann, Low-Power All-Digital Multiphase DLL Design Using a Scalable Phase-to-Digital Converter, in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 4, pp. 1158-1168, April 2020.
https://doi.org/10.1109/TCSI.2019.2945086

Liao, Qiwen, Nan Qi, Miaofeng Li, Shang Hu, Jian He, Bozhi Yin, Jingbo Shi et al. A 50-Gb/s PAM4 Si-photonic transmitter with digital-assisted distributed driver and integrated CDR in 40-nm CMOS. IEEE Journal of Solid-State Circuits 55, no. 5. 2020.
https://doi.org/10.1109/JSSC.2020.2967560

Á. M. Gálvez-Límaco, J. H. Galeti, E. C. N. Silva, R. T. Higuti, M. J. Connelly and C. Kitano, Digital Demodulation Using I/Q Signals and Optical Phase Control Applied to a Vibrometer, in IEEE Sensors Journal, vol. 20, no. 19, pp. 11313-11325, 1 Oct.1, 2020.
https://doi.org/10.1109/JSEN.2020.2997900

Zabeli, M., Hoxha, B., Performance Comparison of the Conventional CMOS and MTCMOS Digital Circuits and Their Simulation, (2022) International Review of Electrical Engineering (IREE), 17 (1), pp. 66-75.
https://doi.org/10.15866/iree.v17i1.20555

Nessir Zghoul, F., A 12-bit Fine-Coarse Successive Approximation Stochastic Analog to Digital Converter, (2022) International Journal on Communications Antenna and Propagation (IRECAP), 12 (3), pp. 206-217.
https://doi.org/10.15866/irecap.v12i3.22249


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize