Open Access Open Access  Restricted Access Subscription or Fee Access

Mathematical Simulation of Heat Transfer in the Structures of a Passenger Carriage Under the Influence of Forest Fires


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v14i4.20818

Abstract


Forest fires have a negative impact on the functioning of the railway. The aim of the work is a mathematical modeling of heat transfer in the structures of a passenger carriage under the influence of radiation from a forest fire front. The originality of the study is explained by modeling heat transfer in structural materials of a passenger carriage under the influence of radiation from a forest fire front. Low and high intensity surface forest fires, crown forest fires are considered. Most of the previously published works are devoted to the analysis of the causes of forest fires, including the ones near the railway. The software implementation of the mathematical model is performed in the RAD Studio software in the high-level programming language Delphi. Mathematically, heat transfer in the materials of a passenger carriage is described by non-stationary differential heat conduction equations with corresponding initial and boundary conditions. In order to solve the partial differential equations, the finite-difference method and the locally one-dimensional method are used. Difference analogs of differential equations are solved by the marching method. The main findings of the study are: 1) physical and mathematical models of heat transfer in the structures of a passenger carriage under conditions of exposure to radiation from a forest fire; 2) the obtained temperature distributions in the inhomogeneous structure of the passenger carriage wall; 3) simulation has shown that a low-intensity surface forest fire causes a relatively safe forest fire impact scenario, while a high-intensity surface forest fire impact is a potentially dangerous scenario; 4) the scenario of the impact of a crown forest fire is unambiguously dangerous at any parameters; 5) the results obtained in this paper and the expected in future investigations will create a physical basis for the development of software for fire safety systems for rolling stock on the railway. The presented results are proposed to be used for forecasting, monitoring, and assessing forest fire dangers during the operation of the rolling stock of JSC Russian Railways.
Copyright © 2021 The Authors - Published by Praise Worthy Prize under the CC BY-NC-ND license.

Keywords


Forest Fire; Danger; Heat Transfer; Impact; Passenger Carriage; Railway; Radiant Heat Flux

Full Text:

PDF


References


Baranovskiy N.V. (2020). Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks. IGI Global.
https://doi.org/10.4018/978-1-7998-1867-0

Martynyuk I.V., Shevchenko A.I., Denisov V.V. Features of ensuring the stability of the transportation process on railway transport in conditions of natural disasters, Science and technology of transport. 2020. N 1. P. 108-116. (In Russian)

Brushlinsky N.N, Ahrens M, Sokolov S.V, Wagner P. World fire statistics // International Association of fire and rescue services, 2019, №24, 68p.

Baranovskiy N.V. (2020) Mathematical Simulation of Anthropogenic Load on Forested Territories for Point Source. In N. Baranovskiy (Ed.), Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks. (pp. 64-88). Hershey, PA: IGI Global.
https://doi.org/10.4018/978-1-7998-1867-0.ch003

Ilyavin M.V., Katin V.D. On the problem of ensuring fire safety during the reform of the Transsib // In the collection: Transsib: at the forefront of reforms. Materials of the international scientific and practical conference. Irkutsk State University of Railways; Transbaikal Institute of Railway Transport. 2016. P. 254-259. (In Russian).

Loehle C. Historical forest changes in the western united states // Forestry Chronicle. 2020. Vol. 96, pp. 36-49.
https://doi.org/10.5558/tfc2020-006

Grishin A. M. Mathematical modeling of forest fire and new methods of fighting them. Russia. Tomsk: Publishing House of the Tomsk State University, 1997. 390 P.

Balbi J.H., Chatelon F.J., Morvan D., Rossi J.L., Marcelli T., Morandini F. A convective-radiative propagation model for wildland fires // International Journal of Wildland Fire. 2020. Vol. 29, pp. 723-738.
https://doi.org/10.1071/WF19103

Frangieh N., Accary G., Morvan D., Méradji S., Bessonov O. Wildfires front dynamics: 3D structures and intensity at small and large scales // Combustion and Flame. 2020. Vol. 211, pp. 54-67.
https://doi.org/10.1016/j.combustflame.2019.09.017

Valendik E.N., Kosov I.V. Effect of thermal radiation of forest fire on the environment. Contemporary Problems of Ecology. 2008, 1, p. 399-403.
https://doi.org/10.1134/S1995425508040012

Pais C., Carrasco J., Elimbi Moudio P., Shen Z.-J.M. Downstream protection value: Detecting critical zones for effective fuel-treatment under wildfire risk // Computers and Operations Research. 2021. Vol. 131, Article N 105252.
https://doi.org/10.1016/j.cor.2021.105252

Francos M., Úbeda X. Prescribed fire management // Current Opinion in Environmental Science and Health. 2021. Vol. 21, Article N 100250.
https://doi.org/10.1016/j.coesh.2021.100250

Elimbi Moudio P., Pais C., Shen Z.-J.M. Quantifying the impact of ecosystem services for landscape management under wildfire hazard // Natural Hazards. 2021. Vol. 106, pp. 531-560.
https://doi.org/10.1007/s11069-020-04474-y

Dillon W.W., Hiatt D., Flory S.L. Experimental manipulation of fuel structure to evaluate the potential ecological effects of fire // Forest Ecology and Management. 2021. Vol. 482. Article N 118884.
https://doi.org/10.1016/j.foreco.2020.118884

Baranovskiy N.V. Mathematical modeling of the most probable scenarios and conditions for the occurrence of forest fires. PhD Thesis. Tomsk: Tomsk State University, 2007. 153 P. (In Russian).

Kosov I.V., Yakubailik O.E. Development of the prototype of a geo-information web system for dynamic visualization of forest fire hazard // IOP Conference Series: Earth and Environmental Science. 2021. Vol. 677. Article N 032102.
https://doi.org/10.1088/1755-1315/677/3/032102

Jamal S., Bappy T.H., Shahariar Azad Rabby A.K.M. Brazilian Forest Fire Analysis: An Unsupervised Approach // Advances in Intelligent Systems and Computing. 2021. Vol. 1248, pp. 423-435.
https://doi.org/10.1007/978-981-15-7394-1_40

Daşdemir İ., Aydın F., Ertuğrul M. Factors Affecting the Behavior of Large Forest Fires in Turkey // Environmental Management. 2021. Vol. 67. pp. 162-175.
https://doi.org/10.1007/s00267-020-01389-z

Fonseca C E.R., Marcillo D., Jácome-Guerrero S.P., Gualotuña T., Cruz H. Identifying Technological Alternatives Focused on Early Alert or Detection of Forest Fires: Results Derived from an Empirical Study // Advances in Intelligent Systems and Computing. 2021. Vol. 1326, pp. 354-368.
https://doi.org/10.1007/978-3-030-68080-0_27

Müller M.M., Vilà-Vilardell L., Vacik H. Towards an integrated forest fire danger assessment system for the European Alps // Ecological Informatics. 2020 Vol. 60. Article N 101151.
https://doi.org/10.1016/j.ecoinf.2020.101151

Eskandari S., Amiri M., Sãdhasivam N., Pourghasemi H.R. Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran // Natural Hazards. 2020. Vol. 104, pp. 305-327.
https://doi.org/10.1007/s11069-020-04169-4

Laneve G., Pampanoni V., Shaik R.U. The daily fire hazard index: A fire danger rating method for mediterranean areas // Remote Sensing. 2020. Vol. 12. Article N 2356.
https://doi.org/10.3390/rs12152356

Grishin A.M., Dolgov A.A., Zima V.P., Subbotin A.N., Tsvyk R.S.H. Experimental and theoretical investigation of the effect of radiation and combined heat transfer on initiation and spread of surface forest fires // Heat Transfer Research, 2002, Vol. 33, pp. 502-514.
https://doi.org/10.1615/HeatTransRes.v33.i7-8.50

Perminov V.A., Marzaeva V.I. Mathematical Modeling of Crown Forest Fire Spread in the Presence of Fire Breaks and Barriers of Finite Size // Combustion, Explosion and Shock Waves, 2020, Vol. 56, pp. 332-343.
https://doi.org/10.1134/S0010508220030107

Strokatov A.A. Physical modeling of fire and heat tornadoes. Abstract of Ph.D. Thesis. Tomsk: Tomsk State University, 2007. 20 p. (In Russian)

Grishin A.M., Golovanov A.N., Kolesnikov A.A., Strokatov A.A., Tsvyk R.Sh. Experimental investigation of the thermal and fire tornadoes // Doklady Akademii Nauk, 2005, Vol. 400, pp. 618-620.

Badmaev N., Bazarov A. Correlation analysis of terrestrial and satellite meteodata in the territory of the Republic of Buryatia (Eastern Siberia, Russian Federation) with forest fire statistics // Agricultural and Forest Meteorology, 2021, Vol. 297, Article N 108245.
https://doi.org/10.1016/j.agrformet.2020.108245

Badmaev N.B., Bazarov A.V., Sychev R.S. (2020). Forest Fire Danger Assessment Using Meteorological Trends: Case Study. In Baranovskiy, N. V. (Ed.), Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks (pp. 183-208). IGI Global.
https://doi.org/10.4018/978-1-7998-1867-0.ch008

Grunstra M.R., Martell D.L. A history of railway fires in Ontario's forests // The Forestry Chronicle. 2014. Vol. 90. P. 314 - 320.
https://doi.org/10.5558/tfc2014-062

Leavitt C. Railway fire protection in Canada // The Forestry Chronicle. 1928. Vol. 4. P. 10 - 19.
https://doi.org/10.5558/tfc4010-4

Beall H.W. Wartime influence on forest fires in Canada // The Forestry Chronicle. 1946. Vol. 22. P. 25 - 29.
https://doi.org/10.5558/tfc22025-1

Beall H.W. Theme address- - fire highlights in the development of forest fire protection in Canada // The Forestry Chronicle. 1955. Vol. 31. P. 332 - 337.
https://doi.org/10.5558/tfc31332-4

CIFFC. Railway fire prevention task team, Canadian Interagency Forest Fire Centre. Wildland fires resulting from railway operations - a public safety threat submission to the Advisory Panel, Railway Safety Act Review. (Accessed 06 March 2021).
Available: http://www.tc.gc.ca/media/documents/rsa-lsf/ciffc.pdf

Grunstra M.R., Martell D.L. Along a rickety road: one hundred years of railway fire in Ontario's forests // Forestory. 2013. Vol. 4. P. 5 - 10.

Pottharst E., Mar B.W. Wildfire prevention engineering systems // Canadian Journal of Forest Research. 1981. Vol. 11. P. 324 - 333.
https://doi.org/10.1139/x81-044

Beskopylny A., Veremeenko A., Kadomtseva E., Anysz H. Monitoring of metal structures with the dynamic methods // AIP Conference Proceedings. 2019. Vol. 2188. Article 060012.
https://doi.org/10.1063/1.5139656

Chen Y., Bescou N.D., Qian J. Soil dynamics and earthquake engineering. 2018. Vol. 107. P. 292 - 302.
https://doi.org/10.1016/j.soildyn.2018.01.038

Beskopylny A., Veremeenko A., Shilov A. Diagnostics of steel structures with the dynamic non-destructive method MATEC Web of Conferences. 2019. Vol. 279. Article 02003.
https://doi.org/10.1051/matecconf/201927902003

Serov A. Cognitive Sensor Technology for Structural Health Monitoring, Procedia Structural Integrity. 2017. Vol. 5. P. 1160 - 1167.
https://doi.org/10.1016/j.prostr.2017.07.027

Sung Y.-Ch., Lin T.-K., Chiu Y.-T., Chang K.-Ch., Chen K.-L. Chang Ch.-Ch. Engineering Structures. 2016. Vol. 126. P. 571 - 585.
https://doi.org/10.1016/j.engstruct.2016.08.006

Hosseinaei S., Ghasemi M.R., Etedali S. Optimal design of passive and active control systems in seismic-excited structures using a new modified tlbo // Periodica Polytechnica Civil Engineering. 2021. Vol. 65, pp. 37-55.
https://doi.org/10.3311/PPci.16507

Liu Z., Jiang N., Zhou C., Ji L., Luo X. Damage effect of terrorist attack explosion-induced shock wave in a double-deck island platform metro station // Periodica Polytechnica Civil Engineering. 2021. Vol. 65, pp. 215-228.
https://doi.org/10.3311/PPci.16929

Giaccu G.F., Solinas D., Briseghella B., Fenu L. Time-Dependent Analysis of Precast Segmental Bridges // International Journal of Concrete Structures and Materials. 2021. Vol. 15. Article N 13.
https://doi.org/10.1186/s40069-020-00445-6

Ding Y., Stoliarov S.I., Kraemer R.H. Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition // Combustion and Flame. 2019. Vol. 202. P. 43 - 57.
https://doi.org/10.1016/j.combustflame.2019.01.003

Wong J.F., Chan J.X., Hassan A., Mohamad Z., Othman N. Thermal and flammability properties of wollastonite-filled thermoplastic composites: a review // Journal of Materials Science. 2021. Vol. 56, pp. 8911-8950.
https://doi.org/10.1007/s10853-020-05255-5

Khuntia T., Biswas S. An investigation on the flammability and dynamic mechanical behavior of coir fibers reinforced polymer composites // Journal of Industrial Textiles. 2020 (Article in Press)
https://doi.org/10.1177/1528083720905031

Weil E.D., Levchik S.V. Flame retardants for plastics and textiles: practical applications. Carriagel Hanser Verlag GmbH Co KG. 2015.
https://doi.org/10.3139/9781569905791.fm

ASTM E1354-15 Standard test method for heat and visible smoke release rates for materials and products using oxygen consumption calorimeter. 2007.

Tests for flammability of plastic materials for parts in devices and appliances. Underwrit. Lab. Inc. 2015.

ASTM E2058-13a Standard test methods for measurement of material flammability using a fire propagation apparatus (FPA). 2013.

McGrattan K., Hostikka S., McDermott R., Floyd J., Weinschenk C., Overholt K. Sixth edition fire dynamic simulator technical reference guide volume 1: mathematical model. NIST special publication. 2017. 147 P.

Elhelw M., El-Shobaky A., Attia A., El-Maghlany W.M. Advanced dynamic modeling study of fire and smoke of crude oil storage tanks // Process Safety and Environmental Protection. 2021. Vol. 146, pp. 670-685.
https://doi.org/10.1016/j.psep.2020.12.002

Salamonowicz Z., Krauze A., Majder-Lopatka M., Dmochowska A., Piechota-Polanczyk A., Polanczyk A. Numerical reconstruction of hazardous zones after the release of flammable gases during industrial processes // Processes. 2021. Vol. 9. Article N 307, pp. 1-17.
https://doi.org/10.3390/pr9020307

Stoliarov S.I., Lyon R.E. Thermo-kinetic model of burning for pyrolyzing materials // Fire Safety Science. 2008. Vol. 9. P. 1141 - 1152.
https://doi.org/10.3801/IAFSS.FSS.9-1141

Gong J., Zhu H., Zhou H., Stoliarov S.I. Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition // Journal of Fire Sciences. 2021. Vol. 39, pp. 190-204.
https://doi.org/10.1177/0734904120982887

Swann J.D., Stoliarov S.I. Determination of pyrolysis and combustion properties of poly(vinylidene fluoride) using comprehensive modeling: Relating heat transfer to the intumescent char's porous structure // Fire Safety Journal. 2021. Vol. 120, Article N 103086.
https://doi.org/10.1016/j.firesaf.2020.103086

Lautenberger C., Fernandez-Pello C. Generalized pyrolysis model for combustible solids // Fire Safety Journal. 2009. Vol. 44. P. 819 - 839.
https://doi.org/10.1016/j.firesaf.2009.03.011

Vermesi I., Richter F., Chaos M., Rein G. Ignition and Burning of Fibreboard Exposed to Transient Irradiation // Fire Technology. 2021. Vol. 57, pp. 1095-1113.
https://doi.org/10.1007/s10694-020-01017-6

Roenner N., Yuan H., Krämer R.H., Rein G. Computational study of how inert additives affect the flammability of a polymer // Fire Safety Journal. 2019. Vol. 106, pp. 189-196.
https://doi.org/10.1016/j.firesaf.2019.04.013

Li J., Gong J. Stoliarov S.I. Gasification experiments for pyrolysis model parameterization and validation // International Journal of Heat and Mass Transfer. 2014. Vol. 77. P. 738 - 744.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.003

Li J., Gong J., Stoliarov S.I. Development of pyrolysis models for charring polymers // Polym. Degrad. Stab. 2015. Vol. 115. P. 138 - 152.
https://doi.org/10.1016/j.polymdegradstab.2015.03.003

Vermesi I., Roenner N., Pironi P., Hadden R.M., Rein G. Pyrolysis and ignition of a polymer by transient irradiation // Combustion and Flame. 2016. Vol. 163. P. 31 - 41.
https://doi.org/10.1016/j.combustflame.2015.08.006

Linteris G.T., Lyon R.E., Stoliarov S.I. Prediction of the gasification rate of thermoplastic polymers in fire-like environments // Fire Safety Journal. 2013. Vol. 60. P. 14 - 24.
https://doi.org/10.1016/j.firesaf.2013.03.018

Li J., Stoliarov S.I. Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers // Combustion and Flame. 2013. Vol. 160. P. 1287 - 1297.
https://doi.org/10.1016/j.combustflame.2013.02.012

Li J., Stoliarov S.I. Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers // Polym. Degrad. Stab. 2014. Vol. 106. P. 2 - 15.
https://doi.org/10.1016/j.polymdegradstab.2013.09.022

McKinnon M.B., Stoliarov S.I., Witkowski A. Development of a pyrolysis model for corrugated carriagedboard // Combustion and Flame. 2013. Vol. 160. P. 2595 - 2607.
https://doi.org/10.1016/j.combustflame.2013.06.001

McKinnon M.B., Stoliarov S.I. Pyrolysis model development for a multilayer floor covering // Materials. 2015. Vol. 8. P. 6117 - 6153.
https://doi.org/10.3390/ma8095295

McKinnon M.B., Ding Y., Stoliarov S.I., Crowley S., Lyon R.E. Pyrolysis model for a carriagebon fiber/epoxy structural aerospace composite // Journal of Fire Science. 2017. Vol. 35. P. 36 - 61.
https://doi.org/10.1177/0734904116679422

Lautenberger C., Rein G., Fernandez-Pello C. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data // Fire Safety Journal. 2006. Vol. 41. P. 204 - 214.
https://doi.org/10.1016/j.firesaf.2005.12.004

Chaos M., Khan M.M., Krishnamoorthy N., De Ris J.L., Dorofeev S.B. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests // Proceedings of Combustion Institute. 2011. Vol. 33. P. 2599 - 2606.
https://doi.org/10.1016/j.proci.2010.07.018

Kim E., Dembsey N. Parameter estimation for comprehensive pyrolysis modeling: guidance and critical observations // Fire Technology. 2015. Vol. 51. P. 443 - 477.
https://doi.org/10.1007/s10694-014-0399-0

Toubia E.A., Sihn S., Pitz J., Vernon J.P., Flores M., Parks S. Thermal response and edgewise compression failure of thermally degraded sandwich composite structures // Composite Structures. 2021. Vol. 256. Article 113070.
https://doi.org/10.1016/j.compstruct.2020.113070

Upasiri I.R., Konthesigha K.M.C., Nanayakkara S.M.A., Poologanathan K., Gatheeshgar P., Nuwanthika D. Finite element analysis of lightweight composite sandwich panels exposed to fire // Journal of Building Engineering. 2021. Vol. 40, Article N 102329.
https://doi.org/10.1016/j.jobe.2021.102329

Wang H., Li S., Liu Y., Wang P., Jin F., Fan H. Foam-filling techniques to enhance mechanical behaviors of woven lattice truss sandwich panels // Journal of Building Engineering. 2021. Vol. 40, Article N 102383.
https://doi.org/10.1016/j.jobe.2021.102383

Xie H., Fang H., Li X., Wan L., Wu P., Yu Y. Low-velocity impact damage detection and characterization in composite sandwich panels using infrared thermography // Composite Structures. 2021. Vol. 269, Article N 114008.
https://doi.org/10.1016/j.compstruct.2021.114008

LaMalva K.J. Structural fire engineering. Reston, VA: American Society of Civil Engineering. 2018.
https://doi.org/10.1061/9780784415047

Buchanan A.H., Abu A.K. Structural design for fire safety. John Wiley & Sons. 2017.
https://doi.org/10.1002/9781118700402

Wang W., Kodur V., Yang X., Li G. Experimental study on local buckling of axially compressed steel stub columns at elevated temperatures // Thin-Walled Struct. 2014. Vol. 82. P. 33 - 45.
https://doi.org/10.1016/j.tws.2014.03.015

Ryder N.L., Wolins S.D., Milke J.A. An investigation of the reduction in fire resistance of steel columns caused by loss of spray-applied fire protection // Journal of Fire Protection Engineering. 2002. Vol. 12. P. 31 - 44.
https://doi.org/10.1177/1042391502012001865

Wang W.-Y., Li G.-Q. Behavior of steel columns in a fire with partial damage to fire protection // Journal of Construct Steel Res. 2009. Vol. 65. P. 1392 -1400.
https://doi.org/10.1016/j.jcsr.2009.01.004

Birman V., Kardomateas G.A., Simitses G.J., Li R. Response of a sandwich panel subject to fire or elevated temperature on one of the surfaces // Compos Part A: Appl Sxi Manuf. 2006. Vol. 37. P. 981 - 988.
https://doi.org/10.1016/j.compositesa.2005.03.014

Kardomateas G.A., Simitses G.J., Birman V. Structural integrity of composite columns subject to fire // Journal of Compos Mater. 2009. Vol. 43. P. 1015-1033.
https://doi.org/10.1177/0021998308097733

Toubia AE., Flores M., Rapking D. A systematic experimental approach for damage quantification in sandwich structures under low-heat fire induced damage. American Society for Composites. 2019. DEStech Publications, Inc.
https://doi.org/10.12783/asc34/31395

Dembele S., Rosario R.A.F., Wen J.X. Thermal breakage of window glass in room fire conditions - analysis of some important parameters // Building and Environment. 2012. Vol. 54. P. 61 - 70.
https://doi.org/10.1016/j.buildenv.2012.01.009

Lester B.T., Long K.N. A constitutive model for glass-ceramic materials // Mechanics of Materials. 2021. Vol. 158. Article N 103849.
https://doi.org/10.1016/j.mechmat.2021.103849

Hu K., Li S., Fan Z., Yan H., Liang X., Cai Y., Zhu Q., Zhang Y. Contributions of mechanical bonding and chemical bonding to high-temperature hermeticity of glass-to-metal compression seals // Materials and Design. 2021. Vol. 202, Article 109579.
https://doi.org/10.1016/j.matdes.2021.109579

Lin J., Lin P., Ao R., Xing L., Lin T., He P., Li J., Yang W. Microstructure evolution and mechanical properties of YAG/YAG joint using bismuth-borate glass // Journal of the European Ceramic Society. 2021. Vol. 41, pp. 2847-2854.
https://doi.org/10.1016/j.jeurceramsoc.2020.12.002

Mai Y.W., Jacob L.J.S. Thermal stress fracture of solar control window panes caused by shading of incident radiation // Mater Struct. 1980. Vol. 13. P. 283 - 288.
https://doi.org/10.1007/BF02480433

Pilette C.F., Taylor D.A. Thermal stresses in double-glazed windows // Canadian Journal of Civil Engineering. 1988. Vol. 15. P. 807 - 814.
https://doi.org/10.1139/l88-105

Emmons H.W. The needed fire science // Proceedings of the First International Symposium of Fire Safety Science. Berkeley, California. IAFSS. 1986. P. 33 - 53.
https://doi.org/10.3801/IAFSS.FSS.1-33

Barth P.K., Sung H. Glass fracture under intense heating. Senior project report. Cambridge: Harvard University. 1977.

Pagni P.J. Fire physics - promises, problems and progress // Proceedings of the Second International Symposium on Fire Safety Science. Tokyo, Japan: IAFSS. 1989. P. 49 - 66.
https://doi.org/10.3801/IAFSS.FSS.2-49

Hassani S.K.S., Shields T.J., Silcock G.W.H.Thermal fracture of window glazing: performance of glazing in fire // Journal of Applied Fire Science. 1994. Vol. 4. P. 249 - 263.
https://doi.org/10.2190/N0E9-U5X9-2A3M-48HL

Pagni P.J. Thermal glass breakage // Proceedings of the Seventh International Symposium on Fire Safety Science. Worchester, MA, USA: IAFSS. 2002. P. 3 - 22.

Chow W.K., Gao Y., Chow C.L. A review on fire safety in buildings with glass façade // Journal of Applied Fire Science. 2006-2007. Vol. 16. P. 201 - 223.
https://doi.org/10.2190/AF.16.3.b

Guzzillo B.R., Pagni P.J. Thermal breakage of double-pane glazing by fire // Journal of Fire Protection Engineering. 1998. Vol. 9. P. 1 - 11.
https://doi.org/10.1177/104239159800900101

Keski-Rahkonen O. Breaking of window glass close to fire // Fire Materials. 1988. Vol. 12. P. 61-69.
https://doi.org/10.1002/fam.810120204

Pagni P.J., Joshi A.A. Glass breaking in fires // Proceedings of the Third International Symposium on Fire Safety Science. Edinburg, UK: IAFSS. 1991. P. 791 - 802.
https://doi.org/10.3801/IAFSS.FSS.3-791

Joshi A.A., Pagni P.J. Fire-induced thermal fields in window glass - I Theory // Fire Safety Journal. 1994. Vol. 22. P. 25 - 43.
https://doi.org/10.1016/0379-7112(94)90050-7

Shields T.J., Silcock GW.H., Flood M. Performance of a single glazing assembly exposed to fire in the centre of an enclosure // Fire Materials. 2002. Vol. 26. P. 51 - 75.
https://doi.org/10.1002/fam.783

Carriageriage. (Accessed 03 May 2021) Available:
http://www.train-photo.ru/

Carriageriage characteristics. (Accessed 03 May 2021) Available:
http://www.tvz.ru/catalog/passenger/item_detail.php?ELEMENT_ID=180

Grishin A.M. Mathematical modeling of forest fires and new ways fighting them. Novosibirsk: Science. 1992. 411 p. (In Russian)

Baranovskiy N., Malinin A. Mathematical simulation of forest fire impact on industrial facilities and wood-based buildings // Sustainability. 2020. Vol. 12. Article 5475.
https://doi.org/10.3390/su12135475

Samarskii A.A. The theory of difference schemes. New York - Basel. Marcel Dekker, Inc, 2001, 761 P.
https://doi.org/10.1201/9780203908518

Samarskii A.A., Vabishchevich P.N. Computational Heat Transfer, Vol. 1. Mathematical Modeling (Chichester, Wiley, 1995)

Baranovskiy, N., Kirienko, V., Mathematical Simulation of Forest Fuel Element at the Crown Forest Fire Impact Taking Into Account Multiphase Reactive Media Mechanics Fundamentals, (2020) International Review of Mechanical Engineering (IREME), 14 (8), pp. 504-515.
https://doi.org/10.15866/ireme.v14i8.19655

RAD Studio Accessed: 2021-05-03:
https://www.embarcadero.com/ru/products/rad-studio

Origin Lab Official web-site Accessed: 2021-05-03:
https://www.originlab.com/


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize