Open Access Open Access  Restricted Access Subscription or Fee Access

Friction Stir Welding Process Parameters Optimization Through Hybrid Multi-Criteria Decision-Making Approach


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v14i1.19537

Abstract


Friction stir welding is an innovative method for welding technology and it provides several benefits in terms of joint strength, especially over traditional welding. This work focuses on the optimization of the multi-response parameters of Friction Stir Welding (FSW). A Taguchi based Gray relational and Hybrid GRA-ANN process has been introduced in order to achieve the appropriate tension strength, elongation, hardness and temperature (top, mid and bottom surfaces) of the joint. In this study, tool rotational speed, travel speed, and shape of the tool have been the input parameters. The testing has been planned to utilize Taguchi's L18 orthogonal array. The findings demonstrate that the pin shape has the greatest influence on the performance and reliability of the tensile strength of the joint. For the welding application, the convex pin has been better than a simple one. At a tool rotating speed of 1,400 rpm and at a travel speed of 10 mm/min, the optimal value for the FSW joint has been obtained. The findings have revealed that the hybrid Taguchi-Grey Relationship Analysis – ANN approach provides the highest grey relation grade of 0.903787 with a convex pin, which is 4.15 percent more than the conventional Taguchi based grey relational analysis.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Friction Stir Welding; Grey Relational Analysis; Hybrid Grey Relational Analysis; Artificial Neural Networks

Full Text:

PDF


References


C. Zhou, X. Yang, and G. Luan, Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys, Mater. Sci. Eng. A, vol. 418, no. 1–2, pp. 155–160, 2006.
https://doi.org/10.1016/j.msea.2005.11.042

I. Sabry and A. M. El-Kassas, Comparative Study on Different Tool Geometrics in Friction Stirred Aluminum Welds Using Response Surface Methodology, in 4th International Conference on Welding and Failure Analysis of Engineering Materials (WAFA), 2018.

A. H. Idrisi and A-H. I. Mourad, Conventional stir casting versus ultrasonic assisted stir casting process: Mechanical and physical characteristics of AMCs, J. Alloys Compd., vol. 805, pp. 502–508, 2019.
https://doi.org/10.1016/j.jallcom.2019.07.076

C. Hamilton, S. Dymek, and M. Blicharski, Mechanical properties of al 6101-T6 welds by friction stir welding and metal inert gas welding, Arch. Metall. Mater., vol. 52, no. 1, p. 67, 2007.

A. H. Idrisi and A-H. I. Mourad, Fabrication and Wear Analysis of Aluminium Matrix Composite Reinforced by SiC Micro and Nano Particles, in ASME 2017 Pressure Vessels and Piping Conference, 2017, p. V06AT06A033-V06AT06A033.
https://doi.org/10.1115/pvp2017-65459

A. I. Aljoboury, A-H. I. Mourad, A. Alawar, M. A. Zour, and O. A. Abuzeid, Stress corrosion cracking of stainless steels recommended for building brine recirculation pumps, Eng. Fail. Anal., vol. 17, no. 6, pp. 1337–1344, 2010.
https://doi.org/10.1016/j.engfailanal.2010.03.008

Y. A. Alzafin, A-H. I. Mourad, M. A. Zour, and O. A. Abuzeid, Stress corrosion cracking of Ni-resist ductile iron used in manufacturing brine circulating pumps of desalination plants, Eng. Fail. Anal., vol. 16, no. 3, pp. 733–739, 2009.
https://doi.org/10.1016/j.engfailanal.2008.06.013

A-H. I. Mourad, A. Khourshid, and T. Sharef, Gas tungsten arc and laser beam welding processes effects on duplex stainless steel 2205 properties, Mater. Sci. Eng. A, vol. 549, pp. 105–113, 2012.
https://doi.org/10.1016/j.msea.2012.04.012

T. E. Borchers, A. Seid, P. Shafer, and W. Zhang, Exacerbated stress corrosion cracking in arc welds of 7xxx aluminum alloys, Weld. World, vol. 62, no. 4, pp. 783–792, 2018.
https://doi.org/10.1007/s40194-018-0564-z

I. Sabry, M. A. Ghafaar, A-H. I. Mourad, and A. H. Idrisi, Stir casted SiC-Gr/Al6061 hybrid composite tribological and mechanical properties, SN Appl. Sci., vol. 2, no. 5, May 2020.
https://doi.org/10.1007/s42452-020-2713-4

D. T. Thekkuden, A. Santhakumari, A. Sumesh, A-H. I. Mourad, and K. Rameshkumar, Instant detection of porosity in gas metal arc welding by using probability density distribution and control chart, Int. J. Adv. Manuf. Technol., 2018.
https://doi.org/10.1007/s00170-017-1484-6

M. Mazur, Porosity in aluminium welds, Weld. Int., vol. 6, no. 12, pp. 929–931, 1992.
https://doi.org/10.1080/09507119209548317

S. K. Maiti and A-H. I. Mourad, Criterion for mixed mode stable crack growth—II. Compact tension geometry with and without stiffener, Eng. Fract. Mech., vol. 52, no. 2, pp. 349–378, 1995.
https://doi.org/10.1016/0013-7944(95)00027-s

S. K. Maiti, S. Namdeo, and A-H. I. Mourad, A scheme for finite element analysis of mode I and mixed mode stable crack growth and a case study with AISI 4340 steel, Nucl. Eng. Des., vol. 238, no. 4, pp. 787–800, 2008.
https://doi.org/10.1016/j.nucengdes.2007.02.004

A-H. I. Mourad, M. J. Alghafri, O. A. A. Zeid, and S. K. Maiti, Experimental investigation on ductile stable crack growth emanating from wire-cut notch in AISI 4340 steel, Nucl. Eng. Des., vol. 235, no. 6, pp. 637–647, 2005.
https://doi.org/10.1016/j.nucengdes.2004.10.005

S. K. Maiti, G. K. Kishore, and A-H. I. Mourad, Bilinear CTOD/CTOA scheme for characterisation of large range mode I and mixed mode stable crack growth through AISI 4340 steel, Nucl. Eng. Des., vol. 238, no. 12, pp. 3175–3185, 2008.
https://doi.org/10.1016/j.nucengdes.2008.06.008

M. El-Sayed, A. El Domiaty, and A-H. I. Mourad, Fracture assessment of axial crack in steel pipe under internal pressure, Procedia Eng., vol. 130, pp. 1273–1287, 2015.
https://doi.org/10.1016/j.proeng.2015.12.297

A-H. I. Mourad, Effect of stress state on mode II stable crack extension, in Key Engineering Materials, 2005, vol. 297, pp. 1604–1610.
https://doi.org/10.4028/www.scientific.net/kem.297-300.1604

S. K. Maiti and A-H. I. Mourad, Criterion for mixed mode stable crack growth—I. Three point bend geometry, Eng. Fract. Mech., vol. 52, no. 2, pp. 321–347, 1995.
https://doi.org/10.1016/0013-7944(95)00026-r

A-H. I. Mourad, J. Altarawneh, A. El Domiaty, and Y. J. Chao, Fracture toughness determined from full-scale pipe, in ASME 2012 Pressure Vessels and Piping Conference, 2012, pp. 125–130.
https://doi.org/10.1115/pvp2012-78783

A-H. I. Mourad, A. Abu-Assi, F. M. Haggag, and Y. J. Chao, Novel Technique for Normalizing Load–Displacement Curves in Fracture Testing, Mater. Perform. Charact., vol. 3, no. 3, pp. 1–20, 2014.
https://doi.org/10.1520/mpc20130084

A-H. I. Mourad, J. Altarawneha, A. E. Domiaty, Y. J. Chao, and F. M. Haggag, Fracture Toughness Measurements From Circumferentially-Notched Pipes Tests, Mater. Perform. Charact., vol. 3, no. 3, pp. 305–321, 2014.
https://doi.org/10.1520/mpc20130083

A-H. I. Mourad et al., Mechanical Performance Assessment of Internally-Defected Materials Manufactured Using Additive Manufacturing Technology, J. Manuf. Mater. Process., vol. 3, no. 3, p. 74, Aug. 2019.

H. Al Jassmi, F. Al Najjar, and A-H. I. Mourad, Large-Scale 3D printing: The way forward, in IOP Conf. Ser. Mater. Sci. Eng, 2018, vol. 324, p. 12088.
https://doi.org/10.1088/1757-899x/324/1/012088

A-H. I. Mourad, Pure shear stable crack growth through Compact‐Tension‐Shear specimen in plane state of stress, Strength, Fract. Complex., vol. 2, no. 3, pp. 111–125, 2004.

A-H. I. Mourad, A. El-Domiaty, and Y. J. Chao, Fracture toughness prediction of low alloy steel as a function of specimen notch root radius and size constraints, Eng. Fract. Mech., vol. 103, pp. 79–93, 2013.
https://doi.org/10.1016/j.engfracmech.2012.05.010

A-H. I. Mourad and S. K. Maiti, Influence of state of stress on mixed mode stable crack growth through D16AT aluminium alloy, Int. J. Fract., vol. 72, no. 3, pp. 241–258, 1995.
https://doi.org/10.1007/bf00037313

A-H. I. Mourad and S. K. Maiti, Mode II stable crack growth, Fatigue Fract. Eng. Mater. Struct., vol. 19, no. 1, pp. 75–84, 1996.

A-H. I. Mourad and S. K. Maiti, Mode I and mixed‐mode stable crack extensions through stiffened three‐point bend specimens, Fatigue Fract. Eng. Mater. Struct., vol. 18, no. 6, pp. 645–652, 1995.
https://doi.org/10.1111/j.1460-2695.1995.tb00888.x

El-Kassas, A., Sabry, I., Mourad, A., Thekkuden, D., Characteristics of Potential Sources - Vertical Force, Torque and Current on Penetration Depth for Quality Assessment in Friction Stir Welding of AA 6061 Pipes, (2019) International Review of Aerospace Engineering (IREASE), 12 (4), pp. 195-204.
https://doi.org/10.15866/irease.v12i4.16362

A-H. I. Mourad, K. H. Harib, and A. El-Domiaty, Fracture Behavior of Friction Stir Spot Welded Joint, in ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, 2010, pp. 205–215.
https://doi.org/10.1115/pvp2010-25986

A-H. I. Mourad, M. Allam, and A. El Domiaty, Study on the mechanical behavior of aluminum alloy 5083 friction stir welded joint, in ASME 2014 Pressure Vessels and Piping Conference, 2014, p. V06AT06A014-V06AT06A014.
https://doi.org/10.1115/pvp2014-28556

D. D. Dhancholia, A. Sharma, and C. Vyas, Optimisation of Friction Stir Welding Parameters for AA 6061 and AA 7039 Aluminium Alloys by Response Surface Methodology (RSM), Int. J. Adv. Mech. Eng., vol. 4, no. 5, pp. 565–571, 2014.

I. Sabry, A. M. El-Kassas, A-H. I. Mourad, D. T. Thekkuden, and J. Abu Qudeiri, Friction Stir Welding of T-Joints: Experimental and Statistical Analysis, J. Manuf. Mater. Process., vol. 3, no. 2, p. 38, 2019.
https://doi.org/10.3390/jmmp3020038

S. Kundu, D. Roy, R. Bhola, D. Bhattacharjee, B. Mishra, and S. Chatterjee, Microstructure and tensile strength of friction stir welded joints between interstitial free steel and commercially pure aluminium, Mater. Des., vol. 50, pp. 370–375, 2013.
https://doi.org/10.1016/j.matdes.2013.02.017

E. Fereiduni, M. Movahedi, and A. H. Kokabi, Aluminum/steel joints made by an alternative friction stir spot welding process, J. Mater. Process. Technol., vol. 224, pp. 1–10, 2015.
https://doi.org/10.1016/j.jmatprotec.2015.04.028

A. Elrefaey, M. Gouda, M. Takahashi, and K. Ikeuchi, Characterization of aluminum/steel lap joint by friction stir welding, J. Mater. Eng. Perform., vol. 14, no. 1, pp. 10–17, 2005.
https://doi.org/10.1361/10599490522310

X. Liu, S. Lan, and J. Ni, Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel, J. Mater. Process. Technol., vol. 219, pp. 112–123, 2015.
https://doi.org/10.1016/j.jmatprotec.2014.12.002

D. T. Thekkuden, A-H. I. Mourad, J. V. Christy, and A. H. Idrisi, Assessment of Weld Quality Using Control Chart and Frequency Domain Analysis, in ASME 2018 Pressure Vessels and Piping Conference, 2018, p. V06BT06A004-V06BT06A004.
https://doi.org/10.1115/pvp2018-85091

L. Wan, Y. Huang, W. Guo, S. Lv, and J. Feng, Mechanical properties and microstructure of 6082-T6 aluminum alloy joints by self-support friction stir welding, J. Mater. Sci. Technol., vol. 30, no. 12, pp. 1243–1250, 2014.
https://doi.org/10.1016/j.jmst.2014.04.009

P. Cavaliere, A. Squillace, and F. Panella, Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding, J. Mater. Process. Technol., vol. 200, no. 1–3, pp. 364–372, 2008.
https://doi.org/10.1016/j.matdes.2008.05.044

X. He, F. Gu, and A. Ball, A review of numerical analysis of friction stir welding, Prog. Mater. Sci., vol. 65, pp. 1–66, 2014.

K. Singh, G. Singh, and H. Singh, Review on friction stir welding of magnesium alloys, J. Magnes. Alloy., vol. 6, no. 4, pp. 399–416, 2018.
https://doi.org/10.1016/j.jma.2018.06.001

K. Colligan, Material flow behavior during friction welding of aluminum, Weld J, vol. 75, no. 7, pp. 229s-237s, 1999.

K. Elangovan and V. Balasubramanian, Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy, J. Mater. Process. Technol., vol. 200, no. 1–3, pp. 163–175, 2008.
https://doi.org/10.1016/j.jmatprotec.2007.09.019

C.-H. Chien, W.-B. Lin, and T. Chen, Optimal FSW process parameters for aluminum alloys AA5083, J. Chinese Inst. Eng., vol. 34, no. 1, pp. 99–105, 2011.
https://doi.org/10.1080/02533839.2011.553024

I. Sabry, A-H. I. Mourad, and D. T. Thekkuden, Optimization of metal inert gas-welded aluminium 6061 pipe parameters using analysis of variance and grey relational analysis, SN Appl. Sci., vol. 2, no. 2, p. 175, 2020.
https://doi.org/10.1007/s42452-020-1943-9

S. Datta, A. Bandyopadhyay, and P. K. Pal, Grey-based Taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding, Int. J. Adv. Manuf. Technol., vol. 39, no. 11–12, pp. 1136–1143, 2008.
https://doi.org/10.1007/s00170-007-1283-6

H. Aydin, A. Bayram, U. Esme, Y. Kazancoglu, and O. Guven, Application of grey relation analysis (GRA) and Taguchi method for the parametric optimization of friction stir welding (FSW) process, Mater Teh., vol. 44, p. 205, 2010.

S. Vijayan, R. Raju, and S. R. K. Rao, Multiobjective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using Taguchi-based grey relation analysis, Mater. Manuf. Process., vol. 25, no. 11, pp. 1206–1212, 2010.
https://doi.org/10.1080/10426910903536782

I. Sabry, A. M. Khourshid, H. M. Hindawy, and A. Elkassas, Comparison of RSM and RA with ANN in predicting mechanical properties of friction stir welded aluminum pipes, Eng. Technol. India, vol. 2, no. 1, 2017.
https://doi.org/10.15740/has/eti/8.1and2/1-14

K. N. Wakchaure, A. G. Thakur, V. Gadakh, and A. Kumar, Multi-objective optimization of friction stir welding of aluminium alloy 6082-T6 Using hybrid Taguchi-Grey relation analysis-ANN method, Mater. Today Proc., vol. 5, no. 2, pp. 7150–7159, 2018.
https://doi.org/10.1016/j.matpr.2017.11.380

A. H. Idrisi and A-H. I. Mourad, Wear Performance Analysis of Aluminum Matrix Composites and Optimization of Process Parameters Using Statistical Techniques, Metall. Mater. Trans. A, vol. 50, no. 11, pp. 5395–5409, 2019.
https://doi.org/10.1007/s11661-019-05446-z

A. H. Idrisi, A-H. I. Mourad, D. T. Thekkuden, and J. V. Christy, Wear behavior of AA 5083/SiC nano-particle metal matrix composite: Statistical analysis, in IOP Conference Series: Materials Science and Engineering, 2018, vol. 324, no. 1, p. 12087.
https://doi.org/10.1088/1757-899x/324/1/012087

A. H. Idrisi and A-H. I. Mourad, Wear performance analysis of Aluminum matrix composites using Artificial neural network, 2019 Adv. Sci. Eng. Technol. Int. Conf., pp. 1–5, Mar. 2019.
https://doi.org/10.1109/icaset.2019.8714330

A. H. Idrisi and A-H. I. Mourad, Wear performance analysis of Aluminum matrix composites using Artificial neural network, in 2019 Advances in Science and Engineering Technology International Conferences (ASET), 2019, pp. 1–5.
https://doi.org/10.1109/icaset.2019.8714330

D. T. Thekkuden and A-H. I. Mourad, Investigation of feed-forward back propagation ANN using voltage signals for the early prediction of the welding defect, SN Appl. Sci., vol. 1, no. 12, p. 1615, 2019.
https://doi.org/10.1007/s42452-019-1660-4

A. K. Lakshminarayanan and V. Balasubramanian, Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique, Trans. Nonferrous Met. Soc. China, vol. 18, no. 3, pp. 548–554, 2008.
https://doi.org/10.1016/s1003-6326(08)60096-5

M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, and A. K. Lakshminarayanan, Optimization of process parameters for friction stir welding of cast aluminium alloy A319 by Taguchi method, Journal of Scientific and Industrial Research (JSIR), Vol. 68 2009.
https://doi.org/10.22486/iwj.v41i2.178090


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize