Open Access Open Access  Restricted Access Subscription or Fee Access

Flat Linear Induction Motor in the Electric Drive of a Milling Plant with Rotating Millstones


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v14i2.19261

Abstract


Flour is a food product; therefore, it is essential to preserve the maximum minerals and vitamins in its production. The study aims to increase the productivity and energy efficiency of the stone mill electric drive. The paper analyses different motors for the stone mill electric drive and introduces a Flat Linear Induction Motor (FLIM). Its design includes an inductor and a secondary element (rotor), a rotating disk with attached millstones. This motor is simple to manufacture and reliable in operation. The paper considers the rational decisions of the stone mill with the FLIM electric drive. A mathematical model was developed, an experimental milling plant with the FLIM was studied to assess the stone mill efficiency. A FLIM, unlike a rotation motor, involves end effects that can be effectively used in the stone mill, in particular, for millstone vibration during their rotation. Stone mills with the FLIM electric drive will allow launching efficient and energy-saving production machines on the world market for producing whole-grain flour in individual production.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Flat Linear Induction Motor; Mathematical Model; Mechanical Characteristics of the Electric Drive; Stone Mill; Whole-Grain Flour

Full Text:

PDF


References


Baikin, S.V., Kurochkin, A. A., Shaburova, G. V., & Afanasyev, A. S. (2007). Technological equipment for processing plant products: Textbook. Moscow: Kolos.

Korczak, R., Jones, J. M., Peña, R. J., & Braun, H. J. (2016). CIMMYT series on carbohydrates, wheat, grains, and health: carbohydrates and their grain sources: A review on their relationships to brain health. Cereal Foods World, 61(4), 143-156.
https://doi.org/10.1094/cfw-61-4-0143

Sakhare, S. D., Inamdar, A. A., Kumar, K. P., & Dharmaraj, U. (2017). Evaluation of roller milling potential of amaranth grains. Journal of Cereal Science, 73, 55-61.
https://doi.org/10.1016/j.jcs.2016.11.006

Jones, J. M., Korczak, R., Pern, R. J., & Braun, H. J. (2017). Carbohydrates and vitamins from grains and their relationships to mild cognitive impairment, Alzheimer's disease, and Parkinson's disease. Cereal Foods World, 62(2), 65-75.
https://doi.org/10.1094/cfw-62-2-0065

Jones, J. M., Adams, J., Harriman, C., Miller, C., & Van der Kamp, J. W. (2015). Nutritional impacts of different whole grain milling techniques: a review of milling practices and existing data. Cereal Foods World, 60(3), 130-139.
https://doi.org/10.1094/cfw-60-3-0130

Bulgakov, V., Holovach, I., Bandura, V., & Ivanovs, S. (2017). A theoretical research of the grain milling technological process for roller mills with two degrees of freedom. INMATEH-Agricultural Engineering, 52(2), 99-106.

Veltishchev, V. N., & Kaloshin, Yu. A. (2005). Fundamentals of calculation and design of machinery and devices for food production. Part 2. "Machines for performing grinding, pressing and mixing processes": Educational and practical guide. Moscow: Moscow State University of Technologies and Management.

Demsky, A. B., Boriskin, M. A., Tamarov, E. V., & Chernolikhov, A. S. (2000). Equipment for the production of flour and cereals: Reference book. St. Petersburg: Professiya Publishing House.

Dunaev, P. F., & Lelikov, O. P. (2019). Construction of components and machine parts: Textbook. 14th ed. Moscow: Moscow State Technical University named after N. E. Bauman.

Zagirnyak, M., Kalinov, A., & Chumachova, A. (2013). Correction of operating condition of a variable-frequency electric drive with a non-linear and asymmetric induction motor. In Eurocon 2013 (pp. 1033-1037). IEEE.
https://doi.org/10.1109/eurocon.2013.6625108

Lukomsky, Y. A., Bubnov, E. A., & Matus, K. I. (2018). Method to control the state of IGBT in voltage source inverter. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 705-707). IEEE.
https://doi.org/10.1109/eiconrus.2018.8317191

Nahdi, T., & Maga, D. (2018). Comparative study of frequency converters for doubly fed induction machines. Sustainability, 10(3), 594.
https://doi.org/10.3390/su10030594

Mustafa, G. M., Gusev, S. I., Kuzikov, S. V., & Chernov, I. S. (2018). A combined frequency converter for soft acceleration of induction electric drives with heavy starting conditions. Russian Electrical Engineering, 89(4), 282-286.
https://doi.org/10.3103/s1068371218040107

Bizyarkin, V. Ya., Byankin, N. P., Galin, Z. A., & Gubaidullin, A. U. (2002). Patent No 23795 Russian Federation, IPC7 B02C 7/14. Millstone mill. Applicant and patent holder: limited liability company "Scientific and technical firm" NIIT-PROEKT" (RU). No 2001134431/20; applied 18.12.2001; published 20.07.2002.

Bukin, S. L., & Bukina, A. S. (2012). Vibratory mill. Patent for the invention RU 2501608 C2, 12.20.2013. Application No. 2012104105/13 of 02/06/2012.

Isfahani, A. H., Ebrahimi, B. M., & Lesani, H. (2008). Design optimization of a low-speed single-sided linear induction motor for improved efficiency and power factor. IEEE Transactions on Magnetics, 44(2), 266-272.
https://doi.org/10.1109/tmag.2007.912646

Cirrincione, M., Pucci, M., Sferlazza, A., & Vitale, G. (2010). Neural based MRAS sensorless techniques for high performance linear induction motor drives. In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society (pp. 918-926). IEEE.
https://doi.org/10.1109/iecon.2010.5675162

He, Y., Wang, Y. S., Lu, Q., Zhang, L., & Liang, F. (2018). Design of single-sided linear induction motor for low-speed Maglev vehicle in 160 km/h and variable slip frequency control. Transportation Systems and Technology, 4(2), 120-128.
https://doi.org/10.17816/transsyst201842120-128

Issac, S., & Poorani, S. (2018). Optimal design selection and analysis of single sided linear induction motor. International Journal of Engineering & Technology, 7(2.21), 222-227.
https://doi.org/10.14419/ijet.v7i2.21.12177

Liu, X., Gao, L., Liu, X., Peng, X., Yang, G., & Mou, S. (2019). Research and analysis of electromagnetic thrust of variable pole distance linear induction motor. In IOP Conference Series: Materials Science and Engineering (Vol. 677, No. 5, p. 052006). IOP Publishing.
https://doi.org/10.1088/1757-899x/677/5/052006

Sakamoto, Y., Kashiwagi, T., Hasegawa, H., Sasakawa, T., & Fujii, N. (2011). Design considerations and experimental verification of a rail brake armature based on linear induction motor technology. IEEJ Transactions on Industry Applications, 131(1), 127-134.
https://doi.org/10.1541/ieejias.131.127

Ostrikov, A. N., Ospanov, A. A., Shevtsov, A. А., Muslimov, N. Z., Timurbekova, A. K., & Jumabekova, G. B. (2020). Mathematical model of high-temperature tube-shaped pasta drying in a conveyer belt drier. International Journal of Food Engineering, 1(ahead-of-print).
https://doi.org/10.1515/ijfe-2020-0101

Ostrikov, A., Ospanov, A., Vasilenko, V., Muslimov, N., Timurbekova, A., & Jumabekova, G. (2019). Melt flow of biopolymer through the cavities of an extruder die: Mathematical modelling. Mathematical Biosciences and Engineering, 16(4), 2875-2905.
https://doi.org/10.3934/mbe.2019142

Ulhaq, A. (2017). Small Linear Induction Motor: Design and Construction. Helsinki Metropolia University of Applied Sciences.

Bertoluzzo, M., Bolognesi, P., Bruno, O., Buja, G., Castellan, S., Isastia, V., Menis, R., Meo, S., A distributed Driving and Steering system for Electric Vehicles using rotary-linear motors, (2010) SPEEDAM 2010 -International Symposium on Power Electronics, Electrical Drives, Automation and Motion, art. no. 5542282, pp. 1156-1159.
https://doi.org/10.1109/speedam.2010.5542282

Benmohamed, F. E., Bousserhane, I. K., Kechich, A., Bessaih, B., & Boucheta, A. (2016). New MRAS secondary time constant tuning for vector control of linear induction motor considering the end effects. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 35(5), 1685-1723.
https://doi.org/10.1108/compel-07-2015-0263

Hamzehbahmani, H. (2011). Modeling and simulating of single side short stator linear induction motor with the end effect. Journal of Electrical Engineering, 62(5), 302-308.
https://doi.org/10.2478/v10187-011-0048-5

Lian, K. Y., Hung, C. Y., Chiu, C. S., & Fu, L. C. (2008). Robust adaptive control of linear induction motors with unknown end-effect and secondary resistance. IEEE Transactions on Energy Conversion, 23(2), 412-422.
https://doi.org/10.1109/tec.2007.905058

Lu, J., & Ma, W. (2010). Research on end effect of linear induction machine for high-speed industrial transportation. IEEE Transactions on Plasma Science, 39(1), 116-120.
https://doi.org/10.1109/tps.2010.2085089

Meo, S., Vectorial control of linear induction machines taking into account end-effects, (2012) International Review on Modelling and Simulations (IREMOS), 5 (3), pp. 1210-1215.

Aipov, R. S. (2003). Linear electric machines and drives based on them: Textbook. Ufa: Bashkir State Agrarian University.

Aipov, R. S., Yarullin, R. B., Gabitov, I. I., Mudarisov, S. G., Linenko, A. V., Farhshatov, M. N., Khasanov, E. R., Gabdrafikov, F. Z., Yukhin, G. P., & Galiullin, R. R. (2018). Mechatronic system linear swing vibrating screen of a grain cleaner. Journal of Engineering and Applied Sciences, 13(8), 6473-6477.

Linenko, A. V., Gabitov, I. I., Baynazarov, V. G., Tuktarov, M. F., Aipov, R. S., Akchurin, S. V., Kamalov, T. I., Badretdinov, I. D., Leontiev, D. S., & Vokhmin, V. S. (2019). The mechatronic module "linear electric drive – sieve boot" intelligent control system of grain cleaner. Journal of the Balkan Tribological Association, 25(3), 708-717.

Yarullin, R., Aipov, R., Gabitov, I. I., Linenko, A., Akchurin, S., Safin, R., Mudarisov, S., Khasanov, E., Rakhimov, Z., & Masalimov, I. (2018). Adjustable driver of grain cleaning vibro-machine with vertical axis of eccentric masses rotation. Journal of Engineering and Applied Sciences, 13(8), 6398-6406.

Aipov, R. S., Nugumanov, R. R., & Linenko, A. V. (2015). Patent No. 2546860 Russian Federation, IPC В02С7/08, В02С7/16. No. 2013153279/13; applied on 11/29/2013; published April 10, 2015.

Eastham, J. F., Cox, T., Lai, H. C., & Proverbs, J. (2008). The use of concentrated windings for offset double stator linear induction motors. Electromotion, 15(2), 51-56.

Konyaev, A. Yu. Sokunov, B. A., Abdullaev, Zh. O., & Shvydky, E. L. (2017). Linear induction machines with oncoming magnetic fields for energy-efficient technologies. Industrial Power, 4, 2-7.

Aipov, R. S., & Nugumanov, R. R. (2013b). Patent No. 2482920 Russian Federation, IPC В02С7/16. A device for grinding solid materials. No. 2012106826/13; applied on 02.24.2012; published 27.05.2013.

Aipov, R. S., & Nugumanov, R. R. (2013a). A mathematical model of a millstone mill with a double-sided linear induction motor in the drive. Electrical Engineering and Information Systems, 4, 27-31.

Voldek, A. I., & Tolvinskaya, E. V. (1975). Fundamentals and methods for calculating the characteristics of linear asynchronous machines. Electricity, 9, 29-36.

Kosoy, V. D., Vinogradov, I. I., & Malyshev, A. D. (2005). Engineering rheology of biotechnological environments: Textbook. St. Petersburg: GIORD.

Krasnov, M. L., Kiselev, A. I., Makarenko, G. I., Shikin, E. V., Zalyapin, V. I., & Sobolev, S. K. (2017). All higher mathematics. Multiple and contour integrals. Vector analysis. Functions of complex variable, partial differential equations: Textbook. 4th ed. Moscow: Lenand.

Linenko, A. V., Aipov, R. S., Yarullin, R. B., Gabitov, I. I., Tuktarov, M. F., Mudarisov, S. G., Kabashov, V. Y., Kamalov, T. I., Gilvanov, V. F., & Khalilov, B.R. (2018). Experimental vibro-centrifugal grain separator with linear asynchronous electric drive. Journal of Engineering and Applied Sciences, 13(8), 6551-6557.

Bazghaleh, A. Z., Naghashan, M. R., Meshkatoddini, M. R., & Mahmoudimanesh, H. (2010). Optimum design of high speed single-sided linear induction motor to obtain best performance. In SPEEDAM 2010 (pp. 1222-1226). IEEE.
https://doi.org/10.1109/speedam.2010.5545154

Ying, Y., Jiangmin, D., Laisheng, T., Xiaoсhun, L., Qibiao, P., & Wenhui, Z. (2018). Study on the optimization of linear induction motor traction system for fast-speed maglev train. Transport Systems and Technologies, 4(3), 156-164.

Krisjanis, M. V., & Alekseev, A. E. (2017). Evaluation of the thermal state of a linear induction motor operating as a positioner in the edging machine. In International Conference on Recent Advances in Engineering, Technology and Applied Sciences (pp. 7-23).

Musolino, A., Rizzo, R., & Tripodi, E. (2012). Tubular linear induction machine as a fast actuator: Analysis and design criteria. Progress in Electromagnetics Research, 132, 603-619.
https://doi.org/10.2528/pier12091506

Nashine, B. K., & Rao, B. P. C. (2014). Design, in-sodium testing and performance evaluation of annular linear induction pump for a sodium cooled fast reactor. Annals of Nuclear Energy, 73, 527-536.
https://doi.org/10.1016/j.anucene.2014.07.026

Son, J. K., Chun, T. W., Lee, H. H., Kim, H. G., & Nho, E. C. (2014). Method of estimating precise piston stroke of linear compressor driven by PWM inverter. In 2014 16th International Power Electronics and Motion Control Conference and Exposition (pp. 673-678). IEEE.
https://doi.org/10.1109/epepemc.2014.6980573

Shiri, A., Pahlavani, M. R. A., & Shoulaie, A. (2012). Secondary back-iron saturation effects on thrust and normal force of single-sided linear induction motor. Advanced Computational Techniques in Electromagnetics, 1, 1-9.
https://doi.org/10.5899/2012/acte-00111


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize