Open Access Open Access  Restricted Access Subscription or Fee Access

Drug Therapy Optimization System Based on a Hybrid Approach Combining Clinical Data and In Silico Modeling - Perspective View and Concept Description


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v13i4.19200

Abstract


Personalized pharmacotherapy has become a new paradigm of safe and efficient treatment and its role is specifically seen nowadays in the COVID-19 era. The therapies explored for SARS-CoV-2 are based on repurposed marketed antiviral drugs that have known cardiac safety issues. It gives a perfect example of the need to develop a tool that helps to optimize dosing strategies. The below-described project aims to propose a general concept and to develop an advanced prototype of the pharmacotherapy optimization system based on mathematical models and clinical data. A hybrid approach is proposed, merging various sources of data and techniques. The system is planned to be algorithm naive and clinicians are actively included in its development and verification. A combination of the PBPK and pharmacodynamic models, including artificial intelligence and Internet-based data-sharing technologies, has been used. Antazoline has been chosen as an exemplary drug due to the challenges connected with the optimal dosing for individual patients during the atrial fibrillation conversion. The developed PBPK model allows for precise exposure assessment for individual patients, while the QSP model predicts the ECG modification triggered by the drug. Further, plans cover thorough verification of the system and expansion towards mobile application.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Hybrid Approach; Mathematical Modeling; Personalized Pharmacotherapy; Proarrhythmia; Quantitative Systems Pharmacology

Full Text:

PDF


References


J. Donagher, J. H. Martin, i M. A. Barras, Individualised medicine: why we need Bayesian dosing, Intern Med J, t. 47, nr 5, Art. nr 5, May 2017.
https://doi.org/10.1111/imj.13412

A. S. Darwich, K. Ogungbenro, O. J. Hatley, i A. Rostami-Hodjegan, Role of pharmacokinetic modeling and simulation in precision dosing of anticancer drugs, Translational Cancer Research; Vol 6, Supplement 10 (December 2017): Translational Cancer Research (Focused Issue: Precision Dosing of Targeted Anticancer Drugs), 2017, Udostępniono: sty. 01, 2017. [Online].
https://doi.org/10.21037/tcr.2017.09.14

D. Gonzalez et al., Precision Dosing: Public Health Need, Proposed Framework, and Anticipated Impact, Clin Transl Sci, t. 10, nr 6, Art. nr 6, 2017.
https://doi.org/10.1111/cts.12490

P. C. Fragkou et al., Review of trials currently testing treatment and prevention of COVID-19, Clin. Microbiol. Infect., May 2020.

Vaccines and treatment of COVID-19, European Centre for Disease Prevention and Control.

https://www.ecdc.europa.eu/en/covid-19/latest-evidence/vaccines-and-treatment

T. M. Polasek et al., What Does it Take to Make Model-Informed Precision Dosing Common Practice? Report from the 1st Asian Symposium on Precision Dosing, AAPS J, t. 21, nr 2, Art. nr 2, 09 2019.
https://doi.org/10.1208/s12248-018-0286-6

B. Al-Metwali, H. Mulla, Personalised dosing of medicines for children, J. Pharm. Pharmacol., t. 69, nr 5, Art. nr 5, may 2017.
https://doi.org/10.1111/jphp.12709

L. B. Sheiner, Computer-aided long-term anticoagulation therapy, Comput. Biomed. Res., t. 2, nr 6, Art. nr 6, December. 1969.
https://doi.org/10.1016/0010-4809(69)90030-5

L. B. Sheiner, B. Rosenberg, V. V. Marathe, Estimation of population characteristics of pharmacokinetic parameters from routine clinical data, J Pharmacokinet Biopharm, t. 5, nr 5, Art. nr 5, October 1977.
https://doi.org/10.1007/bf01061728

R. W. Jelliffe, J. Buell, R. Kalaba, Reducation of digitalis toxicity by computer-assisted glycoside dosage regimens, Ann. Intern. Med., t. 77, nr 6, Art. nr 6, December 1972.
https://doi.org/10.7326/0003-4819-77-6-891

W. T. Sawyer A. L. Finn, Digital computer-assisted warfarin therapy: comparison of two models, Comput. Biomed. Res., t. 12, nr 3, Art. nr 3, June 1979.
https://doi.org/10.1016/0010-4809(79)90017-x

D. Chan, V. Ivaturi, J. Long-Boyle, The time is now: model-based dosing to optimize drug therapy, International Journal of Pharmacokinetics, t. 2, nr 4, Art. nr 4, October 2017.
https://doi.org/10.4155/ipk-2017-0011

A. S. Darwich et al., Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future, Clin. Pharmacol. Ther., t. 101, nr 5, Art. nr 5, may 2017.
https://doi.org/10.1002/cpt.659

B. Mesko, The role of artificial intelligence in precision medicine, Expert Review of Precision Medicine and Drug Development, t. 2, nr 5, Art. nr 5, September 2017.
https://doi.org/10.1080/23808993.2017.1380516

T. Hulsen et al., From Big Data to Precision Medicine, Front Med (Lausanne), t. 6, s. 34, 2019.

INJE University, 1st Asian Symposium on Precision Dosing. What Does It Take to Make Model-informed Individual Dosing the Common Practice? December 15, 2017 Busan, Korea.
https://doi.org/10.1208/s12248-018-0286-6

E. Chatelut, M. L. White-Koning, R. H. Mathijssen, F. Puisset, S. D. Baker, i A. Sparreboom, Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents, Br. J. Cancer, t. 107, nr 7, Art. nr 7, September 2012.
https://doi.org/10.1038/bjc.2012.357

R. J. Keizer, R. Ter Heine, A. Frymoyer, L. J. Lesko, R. Mangat, i S. Goswami, Model-Informed Precision Dosing at the Bedside: Scientific Challenges and Opportunities, CPT Pharmacometrics Syst Pharmacol, t. 7, nr 12, Art. nr 12, 2018.
https://doi.org/10.1002/psp4.12353

P. Kirchhof et al., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS, Eur. Heart J., t. 37, nr 38, Art. nr 38, 07 2016.

M. M. Farkowski et al., Comparative effectiveness and safety of antazoline-based and propafenone-based strategies for pharmacological cardioversion of short-duration atrial fibrillation in the emergency department, Polish Archives of Internal Medicine, t. 126, nr 6, Art. nr 6, June 2016.
https://doi.org/10.20452/pamw.3452

M. Kuch, M. Janiszewski, M. Dłuzniewski, A. Mamcarz, Antazoline-ineffective or misprized in the treatment of paroxysmal atrial fibrillation?, Polski Przeglad Kardiologiczny, t. 2, nr 3, Art. nr 3, 2000.

Wybraniec Maciej T., Wróbel Wojciech, Wilkosz Katarzyna, Wrona Karolina, Bula Karolina, Mizia-Stec Katarzyna, Pharmacological Cardioversion With Antazoline in Atrial Fibrillation: The Results of the CANT Study, Journal of the American Heart Association, t. 7, nr 20, Art. nr 20, October 2018,
https://doi.org/10.1161/jaha.118.010153

L. Leön-Sotomayor, A clinical evaluation of the antiarrhythmic properties of antazoline, The American Journal of Cardiology, t. 11, nr 5, Art. nr 5, may 1963.

E. W. Reynolds, W. M. Baird, i M. E. Clifford, A clinical trial of antazoline in the treatment of arrhythmias, The American Journal of Cardiology, t. 14, nr 4, Art. nr 4, October 1964.
https://doi.org/10.1016/0002-9149(64)90035-9

M. Srzednicki, Z. Sadowski, A. Kulikowski, Evaluation of the anti-arrhythmia effectiveness of Phenazolinum Polfa in paroxysmal atrial fibrillation, Pol Tyg Lek, t. 45, nr 45–46, Art. nr 45–46, lis. 1990.

P. Balsam et al., Antazoline for termination of atrial fibrillation during the procedure of pulmonary veins isolation, Advances in Medical Sciences, t. 60, nr 2, Art. nr 2, September 2015.ù
https://doi.org/10.1016/j.advms.2015.03.002

R. Piotrowski, T. Kryński, J. Baran, P. Futyma, S. Stec, P. Kułakowski, Antazoline for rapid termination of atrial fibrillation during ablation of accessory pathways, Cardiol J, t. 21, nr 3, Art. nr 3, 2014.
https://doi.org/10.5603/cj.a2013.0121

A. Maciag et al., Efficacy and safety of antazoline in the rapid cardioversion of paroxysmal atrial fibrillation (the AnPAF Study), Europace, t. 19, nr 10, Art. nr 10, October 2017.
https://doi.org/10.1093/europace/euw384

J. Giebułtowicz, R. Piotrowski, J. Baran, P. Kułakowski, i P. Wroczyński, Application of a novel liquid chromatography/tandem mass spectrometry method for the determination of antazoline in human plasma: Result of ELEPHANT-I [ELEctrophysiological, pharmacokinetic and hemodynamic effects of PHenazolinum (ANTazoline mesylate)] human pharmacokinetic study, J Pharm Biomed Anal, t. 123, s. 113–119, may 2016.
https://doi.org/10.1016/j.jpba.2016.01.060

M. M. Farkowski, A. Maciag, I. Kowalik, M. Konka, H. Szwed, i M. Pytkowski, Intravenous antazoline, a first-generation antihistaminic drug with antiarrhythmic properties, is a suitable agent for pharmacological cardioversion of atrial fibrillation induced during pulmonary vein isolation due to the lack of influence on atrio-venous conduction and high clinical effectiveness (AntaEP Study), Br J Clin Pharmacol, t. 85, nr 7, Art. nr 7, July 2019.
https://doi.org/10.1111/bcp.13940

B. Badyra et al., Interactions of anthazoline with channels encoded by the hERG gene, presented on 20th International Congress of the Polish Cardiac Society, Poznan, 17.09 2016.

M. Shebley et al., Physiologically Based Pharmacokinetic Model Qualification and Reporting Procedures for Regulatory Submissions: A Consortium Perspective, Clin Pharmacol Ther, t. 104, nr 1, Art. nr 1, July 2018.

Z. Li et al., „General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA In Silico Strategy, Clin. Pharmacol. Ther., t. 107, nr 1, s. 102–111, January 2020.

S. Polak, B. Wisniowska, K. Fijorek, A. Glinka, i A. Mendyk, In vitro-in vivo extrapolation of drug-induced proarrhythmia predictions at the population level, Drug Discov.Today, t. 19, nr 3, Art. nr 3, 2014.
https://doi.org/10.1016/j.drudis.2013.10.009


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize