Open Access Open Access  Restricted Access Subscription or Fee Access

Effects of Dynamic Alignment on the Transtibial Prosthetic Gait in the Sagittal Plane of a Kinematic Model Using OpenSim


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v15i6.19054

Abstract


A sensitivity analysis of the kinematics of the transtibial amputee gait has been performed in the sagittal plane in relation to the dynamic alignment (position of the prosthesis components): flexion/extension and abduction/adduction of the socket, as well as plantar flexion/dorsiflexion and eversion/inversion of the prosthetic foot. The analysis has led to the determination of the effects on the flexion and extension in the sagittal planes of the hips, knees, and ankles of the amputated leg and the non-amputated leg. The estimation has been performed for all gait phases through a model developed in OpenSim® and Matlab®, by using the measurements of a patient with Technaid® inertial sensors and by varying the socket position in the sagittal and frontal planes between 2, 6, and 10 degrees. These measurements have been processed in Matlab® in order to deliver a motion vector. A script has been developed in order to generate the modified structural model of OpenSim® based on the static position of the vector in each case. Once the model has been obtained, the inverse kinematics of the hip, knee, and ankle have been calculated. By considering that it is not possible to perform variations on the prosthetic foot without compromising the stability of the user while taking measurements, a model variant in which a neural network is trained to estimate the kinematics of the hip, knee, and ankle has been developed. Regarding the prosthetic foot, the changes derived from modifications in dorsiflexion, plantar flexion, eversion, and inversion positions significantly alter the kinematics of the hip and knee.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Prosthetic Gait; Kinematics; OpenSim; Prosthetic; Transtibial Amputee; Musculoskeletal Model

Full Text:

PDF


References


Office of the High Commissioner for Peace, Statistics of Comprehensive Assistance to Victims of MAP and UXO, Comprehensive Action Against Antipersonnel Mines - AICMA, 2022. (accessed Feb. 13, 2023).
http://www.accioncontraminas.gov.co/Estadisticas

L. Ren, D. Howard, L. Ren, C. Nester, and L. Tian, A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies, J. Biomech., vol. 43, no. 2, pp. 194-202, 2010.
https://doi.org/10.1016/j.jbiomech.2009.09.027

M. A. M. Nahid Tafti, Fatemeh Hemmati, Reza Safari, Mohammad Taghi Karimi, Farzad Farmani, Ali Khalaf, A systematic review of variables used to assess clinically acceptable alignment of unilateral transtibial amputees in the literature, Proc. Inst. Mech. Eng., vol. 232, no. 8, pp. 826-840, 2018, Accessed: Feb. 15, 2023. [Online]. Available:
https://doi.org/10.1177/0954411918789450

A. J. Ikeda, K. D. Reisinger, M. Malkush, Y. Wu, M. L. Edwards, and R. S. Kistenberg, Á priori alignment of transtibial prostheses: A comparison and evaluation of three methods, Disabil. Rehabil. Assist. Technol., vol. 7, no. 5, pp. 381-388, Sep. 2012.
https://doi.org/10.3109/17483107.2011.637284

Nahid Tafti, Masoud Karimlou, Mohammad Ali Mardani, Amir Salar Jafarpisheh, Gholam Reza Aminian & Reza Safari (2020) Development and preliminary evaluation of a new anatomically based prosthetic alignment method for below-knee prosthesis, Assistive Technology, 32:1, 38-46.
https://doi.org/10.1080/10400435.2018.1467513

H. Hashimoto, T. Kobayashi, F. Gao, M. Kataoka, and K. Okuda, The effect of coronal prosthetic alignment changes on socket reaction moments, spatiotemporal parameters, and perception of alignment duringhallar encontrar identificar variaciones gait in individuals with transtibial amputation, J. Rehabil. Assist. Technol. Eng., vol. 5, pp. 1-10, 2018.
https://doi.org/10.1177/2055668318795402

N. Y. Won et al., Scoping review to evaluate existing measurement parameters and clinical outcomes of transtibial prosthetic alignment and socket fit, Prosthet. Orthot. Int., vol. 46, no. 2, pp. 95-107, Apr. 2022.
https://doi.org/10.1097/PXR.0000000000000061

C. Irolla, J. Rheinstein, R. Richardson, C. Simpson, and K. Carroll, Evaluation of a Graduated Length Prosthetic Protocol for Bilateral Transfemoral Amputee Prosthetic Rehabilitation, J. Prosthetics Orthot., vol. 25, no. 2, 2013.
https://doi.org/10.1097/JPO.0b013e31828ad795

N. Jonkergouw, M. R. Prins, A. W. P. Buis, and P. Van Der Wurff, The effect of alignment changes on unilateral transtibial amputee's gait: A systematic review, PLoS One, vol. 11, no. 12, pp. 1-18, 2016.
https://doi.org/10.1371/journal.pone.0167466

H. Hashimoto, T. Kobayashi, F. Gao, M. Kataoka, M. S. Orendurff, and K. Okuda, The effect of transverse prosthetic alignment changes on socket reaction moments during gait in individuals with transtibial amputation, Gait Posture, vol. 65, no. June, pp. 8-14, 2018.
https://doi.org/10.1016/j.gaitpost.2018.06.119

V. R. Rajula, L. Springgate, A. Haque, M. Kamrunnahar, S. J. Piazza, and B. Kaluf, A Biomimetic Adapter for Passive Self-alignment of Prosthetic Feet, Mil. Med., vol. 186, no. Supplement_1, pp. 665-673, Jan. 2021.
https://doi.org/10.1093/milmed/usaa230

F. De Groote and A. Falisse, Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait, Proc. R. Soc. B Biol. Sci., vol. 288, no. 1946, 2021.
https://doi.org/10.1098/rspb.2020.2432

L. A. Luengas-Contreras, E. Camargo-Casallas, D. Guardiola, , Modeling and Simulation of Prosthetic Gait Using a 3-D Model of Transtibial Prosthesis, Rev. Ciencias la Salud, vol. 16, no. 1, pp. 82-100, 2018.
https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.6492

J. L. Hicks, M. H. Schwartz, and S. L. Delp, Modeling and simulation of normal and pathological gait, Identif. Treat. Gait Probl. Cereb. Palsy , 2nd Ed., vol. 10, no. 3, pp. 285-306, 2009.
https://doi.org/10.1007/s11465-015-0343-0

C. Ferreira, F. Dzeladini, A. Ijspeert, L. P. Reis, and C. P. Santos, Development of a simulated transtibial amputee model, 19th IEEE Int. Conf. Auton. Robot Syst. Compet. ICARSC 2019, Apr. 2019.
https://doi.org/10.1109/ICARSC.2019.8733636

D. G. Friedl and A. Falisse, Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait, Spec. Featur. Rev., vol. B, no. 288, 2021.
https://doi.org/10.1098/rspb.2020.2432

J. a. Reinbolt, A. Seth, and S. L. Delp, Simulation of human movement: Applications using OpenSim, Procedia IUTAM, vol. 2, pp. 186-198, 2011.
https://doi.org/10.1016/j.piutam.2011.04.019

V. Raveendranathan and R. Carloni, Musculoskeletal Model of an Osseointegrated Transfemoral Amputee in OpenSim, Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, vol. 2020-Novem, pp. 1196-1201, Nov. 2020.
https://doi.org/10.1109/BioRob49111.2020.9224422

M. Voinescu, D. P. Soares, R. M. N. Jorge, A. Davidescu, and L. J. Machado, Estimation of the forces generated by the thigh muscles for transtibial amputee gait, J. Biomech., vol. 45, no. 6, pp. 972-977, 2012.
https://doi.org/10.1016/j.jbiomech.2012.01.010

Andrea M. Willson, Anthony J. Anderson, Chris A. Richburg, Brittney C. Muir, Joseph Czerniecki, Katherine M. Steele & Patrick M. Aubin (2023) Full body musculoskeletal model for simulations of gait in persons with transtibial amputation, Computer Methods in Biomechanics and Biomedical Engineering, 26:4, 412-423.
https://doi.org/10.1080/10255842.2022.2065630

L. A. Luengas, E. Camargo, and G. Sanchez, Modeling and simulation of normal and hemiparetic gait, Front. Mech. Eng., vol. 10, no. 3, 2015.
https://doi.org/10.1007/s11465-015-0343-0

L. A. Luengas C., M. A. Gutierrez, and E. Camargo, Alignment of prostheses and biomechanical parameters of transtibial amputee patients. Bogota: UD Editorial, 2017.

Batayneh, W., Bataineh, A., Ahmad, H., Al Olaimat, A., Megdadi, M., Design and Implementation of a Bio-Mimic Hexapod Robot, (2020) International Review on Modelling and Simulations (IREMOS), 13 (5), pp. 337-346.
https://doi.org/10.15866/iremos.v13i5.19268

Jumaa Alkurawy, L., Saleh, M., Humood, K., Modeling, Identification and Control of Inverse Kinematic of PUMA Robots, (2020) International Journal on Engineering Applications (IREA), 8 (4), pp. 140-147.
https://doi.org/10.15866/irea.v8i4.18742


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize