Open Access Open Access  Restricted Access Subscription or Fee Access

Simulation of a Quadrupedal Bioinspired Modular Robot Using Webots


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v12i2.16349

Abstract


This paper describes the algorithm creation process of a salamander-based locomotion in a modular robotic system (Mecabot). The morphology of the Mecabot robot allows translation and turning movements with active column: each column link synchronously moves with the legs, giving an additional DOF. The active column execution is based on the salamander movement. The rotation needs another program perspective, the column is immobilized and only the legs work. The robot is tested in the simulation environment Webots under ideal conditions, it is considered rigid and his mass center is supposed to be in the middle of the column. The simulations allow testing different coordination schemes and to observe an approximate behavior in three different types of movement: translation, turning and rotation. With the simulation it is determined which of one those three kinds of locomotion could program with active column and which one could not.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Bioinspired; Mobile Robots; Modular Robots; Quadrupedal Robots; Salamander

Full Text:

PDF


References


T. Tosun, G. Jing, H. Kress-Gazit, and M. Yim, Computer-Aided Compositional Design and Verification for Modular Robots, Robotics Research, Springer, Cham, 2018, pp. 237–252, 2018.
https://doi.org/10.1007/978-3-319-51532-8_15

T. Wang, H. Li, and C. Meng, Collective grasping for non-cooperative objects using modular self-reconfigurable robots, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3296–3301, 2015.
https://doi.org/10.1109/iros.2015.7353835

K. Stoy, D. Brandt, D.J. Christensen, Self-Reconfigurable Robots, The MIT Press, 2010 ISBN:9780262013710.

M. Yim, D. G. Duff, y K. D. Roufas, Walk on the wild side [modular robot motion], IEEE Robot Autom Mag Vol 9 No 4 Pp 49-53 Dic 2002.
https://doi.org/10.1109/mra.2002.1160071

M. Yim, D. G. Duff, y K. D. Roufas, PolyBot: a modular reconfigurable robot, IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, pp. 514-520 vol.1, 2000.
https://doi.org/10.1109/robot.2000.844106

M. Park y M. Yim, Distributed control and communication fault tolerance for the CKBot, ASMEIFToMM Int. Conf. Reconfigurable Mech. Robots pp 682-688, 200.
ISBN: 978-1-876346-58-4

S. Castro, S. Koehler, y H. Kress-Gazit, High-level control of modular robots, IEEERSJ Int. Conf. Intell. Robots Syst. Pp 3120-3125, 2011.
https://doi.org/10.1109/iros.2011.6048596

G. Jing, T. Tosun, M. Yim, y H. Kress-Gazit, An End-to-End System for Accomplishing Tasks with Modular Robots: Perspectives for the AI community, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) Pp 4879-4883, 2017.
https://doi.org/10.24963/ijcai.2017/686

K. Karakasiliotis, N. Schilling, J.-M. Cabelguen, and A. J. Ijspeert, Where are we in understanding salamander locomotion: biological and robotic perspectives on kinematics, Biol. Cybern., vol. 107, no. 5, pp. 529–544, Oct. 2013.
https://doi.org/10.1007/s00422-012-0540-4

https://doi.org/10.1007/s00422-012-0540-4

A. Crespi, K. Karakasiliotis, A. Guignard, and A. J. Ijspeert, Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits, IEEE Trans. Robot., vol. 29, no. 2, pp. 308–320, Apr. 2013.
https://doi.org/10.1109/tro.2012.2234311

S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, and M. R. Cutkosky, Smooth Vertical Surface Climbing With Directional Adhesion, IEEE Trans. Robot., vol. 24, no. 1, pp. 65–74, Feb. 2008.
https://doi.org/10.1109/tro.2007.909786

T. Horvat, K. Karakasiliotis, K. Melo, L. Fleury, R. Thandiackal, and A. J. Ijspeert, Inverse kinematics and reflex based controller for body-limb coordination of a salamander-like robot walking on uneven terrain, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 195–201, 2015.
https://doi.org/10.1109/iros.2015.7353374

X. Yin, C. Wang, and G. Xie, A salamander-like amphibious robot: System and control design, IEEE International Conference on Mechatronics and Automation, pp. 956–961, 2012.
https://doi.org/10.1109/icma.2012.6283272

W. G. Aguilar, M. A. Luna, J. F. Moya, and V. Abad, Amphibious Salamander Robot with Bioinspired Locomotion, Ingenius, no. 17, p. 51, Dec. 2016.
https://doi.org/10.17163/ings.n17.2017.07

P. Manoonpong, Neural Preprocessing and Control of Reactive Walking Machines: Towards Versatile Artificial Perception-Action Systems. Berlin Heidelberg: Springer-Verlag, 2007.
https://doi.org/10.1007/978-3-540-68803-7

K. Karakasiliotis et al., From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion, J R Soc Interface Vol 13. 2016.
https://doi.org/10.1098/rsif.2015.1089

P. G. de Santos, E. Garcia, y J. Estremera, Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots, Lond. Springer-Verl., 2006.

https://doi.org/10.1007/1-84628-307-8

T. Horvat, K. Melo, and A. J. Ijspeert, Spine Controller for a Sprawling Posture Robot, IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 1195–1202, Apr. 2017.
https://doi.org/10.1109/lra.2017.2664898

J. Braure, Participation to the Construction of a Salamander Robot: Exploration of the Morphological Configuration and the Locomotion Controller, Master Thesis, Swiss Federal Institute of Technology, Lausanne, 2004.

H. Ahmadzadeh and E. Masehian, Modular robotic systems: Methods and algorithms for abstraction, planning, control, and synchronization, Artif. Intell., vol. 223, pp. 27–64, Jun. 2015.
https://doi.org/10.1016/j.artint.2015.02.004

A. J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Netw Vol 21 No 4 Pp 642-653, May 2008.
https://doi.org/10.1016/j.neunet.2008.03.014

G. Pierris y T. S. Dahl, Learning Robot Control Using a Hierarchical SOM-Based Encoding, IEEE Trans Cogn Dev Syst Vol 9 No 1 Pp 30-43, Mar. 2017.
https://doi.org/10.1109/tcds.2017.2657744

P. Manoonpong, U. Parlitz, y F. Wörgötter, Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines, Front Neural Circuits Vol. 7, 2013.
https://doi.org/10.3389/fncir.2013.00012

P. N. Lancheros, L. B. Sanabria, and R. A. Castillo, Simulation of modular robotic system MECABOT in caterpillar and snake configurations using Webots software, IEEE Colombian Conference on Robotics and Automation (CCRA), pp. 1–6, 2016.
https://doi.org/10.1109/ccra.2016.7811417

W. A. M. Rubiano and R. A. C. Estepa, Simulation and Implementation of Robotc System on Wheel Arquitecture, Bachelor Thesis, Military University Nueva Granada, 2017.

R. Castillo, M. Cotera, and G. Vargas, Simulation and implementation of a hexapod configuration using modular robotics, International Congress of Innovation and Trends on Engineering (CONIITI), pp. 1–6. 2017.
https://doi.org/10.1109/coniiti.2017.8273340

Caceres, C., Puerta, J., Jiménez, R., Rojas, D., Design of a Bio-Inspired Equine Robot Prototype, (2016) International Review of Mechanical Engineering (IREME), 10 (1), pp. 12-17.
https://doi.org/10.15866/ireme.v10i1.7672


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize