Open Access Open Access  Restricted Access Subscription or Fee Access

A Modified Direct-Quadrature Axis Model for Characterization of Air-gap Mixed Eccentricity Faults in Three-Phase Induction Motor


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v11i6.15513

Abstract


Advanced signal processing techniques and high-speed analog to digital converters enabled on-line detection of internal faults of induction motor even at inception. Reliable and accurate identification of fault signatures in practical situations is always a challenge due to load oscillations, supply harmonics or the presence of multiple faults. Hence model-based analyses are essential for diagnostic studies of faults in machines. This paper proposes a modified direct and quadrature (d-q) axis based approach for modeling a three-phase squirrel cage induction motor with air-gap mixed eccentricity faults. In the proposed model, air-gap length- and thus magnetizing reactance- are modeled as a rotor position-dependent function, to represent various variable air-gap fault conditions. Stator current spectrum is used as the diagnostic signal for detection of the presence of these faults. This simple approach of modeling is computationally less intensive compared to alternative approaches such as multiple coupled circuit modeling and finite element approach. Characteristic signatures of mixed eccentricity fault obtained by simulation studies were also validated in the motor current spectrum obtained through experimentation on a motor with prefabricated eccentricity.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


d-q Model; Motor Current Signature Analysis; Air-Gap Eccentricity; Motor Fault Diagnosis

Full Text:

PDF


References


J. Faiz, B. M. Ebrahimi, B. Akin, and H. A. Toliyat, Finite-element transient analysis of induction motors under mixed eccentricity fault, IEEE Transactions on Magnetics, Vol. 44 (Issue 1):66-74, 2008.
https://doi.org/10.1109/tmag.2007.908479

S. Nandi, S. Ahmed and H. A. Toliyat, Detection of rotor slot and other eccentricity related harmonics in a three-phase induction motor with different rotor cages, IEEE Transactions on Energy Conversion, Vol.16 (Issue 3): 253-260, 2001.
https://doi.org/10.1109/60.937205

R. J Romero-Troncoso, A. Garcia-Perez, D. Morinigo-Sotelo, O. Duque-Perez, R. A. Osorio-Rios, and M. A Ibarra-Manzano, Rotor unbalance and broken rotor bar detection in inverter-fed induction motors at start-up and steady-state regimes by high-resolution spectral analysis, Electric Power Systems Research, Vol.133: 142-148, 2016.
https://doi.org/10.1016/j.epsr.2015.12.009

D. Hyun, S. Lee, J. Hong, S. B. Lee, and, S. Nandi, Detection of airgap eccentricity for induction motors using the single-phase rotation test, IEEE Transactions on Energy Conversion, Vol. 27 (Issue 3): 689-696, 2012.
https://doi.org/10.1109/tec.2012.2198218

K. M. Siddiqui, K. Sahay, V. K. Giri, and N. Gothwal, Diagnosis of airgap eccentricity fault in the inverter driven induction motor drives by transformative techniques, Perspectives in Science, Vol.8: 127-131, 2016.
https://doi.org/10.1016/j.pisc.2016.04.014

C. Concari, G. Franceschini, and C. Tassoni, Toward practical quantification of induction drive mixed eccentricity, IEEE Transactions on Industry Applications, Vol. 47(Issue 3): 1232-1239, 2011.
https://doi.org/10.1109/tia.2011.2124434

Elbouchikhi, E., Choqueuse, V., Benbouzid, M., Induction Machine Diagnosis Using Stator Current Advanced Signal Processing, (2015) International Journal on Energy Conversion (IRECON), 3 (3), pp. 76-87.

Khodja, M., Aimer, A., Boudinar, A., Benouzza, N., Bendiabdellah, A., Stator Current Model Validation for Rotor Faults Diagnosis, (2017) International Journal on Energy Conversion (IRECON), 5 (6), pp. 163-170.
https://doi.org/10.15866/irecon.v5i6.14494

D. G. Dorrell and A. Salah, Detection of rotor eccentricity in wound rotor induction machines using pole-specific search coils, IEEE Transactions on Magnetics, Vol. 51(Issue 11): 1-4, 2015.
https://doi.org/10.1109/intmag.2015.7156993

M. J. Kim, B. K. Kim, J. W. Moon, Y. H. Cho, D. H. Hwang, and D.S. Kang. Analysis of inverter-fed squirrel-cage induction motor during eccentric rotor motion using FEM, IEEE Transactions on Magnetics, Vol. 44(Issue 6): 1538-1541, 2008.
https://doi.org/10.1109/tmag.2007.916299

G. Mirzaeva, K. I. Saad, and M. G. Jahromi, Comprehensive Diagnostics of Induction Motor Faults Based on Measurement of Space and Time Dependencies of Air Gap Flux, IEEE Transactions on Industry Applications, Vol. 53(Issue 3): 2657-2666, 2017.
https://doi.org/10.1109/tia.2016.2628718

D. G. Dorrell, W. T. Thomson, and S. Roach, Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors, IEEE Transactions on Industry Applications, Vol. 33 (Issue 1): 24-34, 1997.
https://doi.org/10.1109/28.567073

S. R. Huang, K. H. Huang, K.H. Chao, and W.T. Chiang, Fault analysis and diagnosis system for induction motors, Computers & Electrical Engineering, Vol. 54: 195-209, 2016.
https://doi.org/10.1016/j.compeleceng.2016.01.028

P. A. Delgado-Arredondo, D. Morinigo-Sotelo, R. A. Osornio-Rios, J. G. Avina-Cervantes, H. Rostro-Gonzalez, and R. de Jesus Romero-Troncoso, Methodology for fault detection in induction motors via sound and vibration signals, Mechanical Systems and Signal Processing, Vol.83: 568-589, 2017.
https://doi.org/10.1016/j.ymssp.2016.06.032

R. R. Schoen, and T. G. Habetler, Evaluation and implementation of a system to eliminate arbitrary load effects in current-based monitoring of induction machines, IEEE Transactions on Industry Applications, Vol. 33(Issue 6): .1571-1577, 1997.
https://doi.org/10.1109/28.649970

J. H. Jung, J. J. Lee B. H. Kwon, Online diagnosis of induction motors using MCSA, IEEE Transactions on Industrial Electronics, Vol. 53(Issue 6): 1842-1852, 2006.
https://doi.org/10.1109/tie.2006.885131

J. Faiz, and M. Ojaghi, Instantaneous-power harmonics as indexes for mixed eccentricity fault in mains-fed and open/closed-loop drive-connected squirrel-cage induction motors. IEEE Transactions on Industrial Electronics, Vol.56 (Issue 11): 4718-4726, 2009.
https://doi.org/10.1109/tie.2009.2030816

Z. Liu, X. Yin, Z. Zhang, D. Chen and W. Chen, Online rotor mixed fault diagnosis way based on spectrum analysis of instantaneous power in squirrel cage induction motors, IEEE Transactions on Energy Conversion, Vol.19(Issue 3): 485-490, 2004.
https://doi.org/10.1109/tec.2004.832052

M. H. Drif and A. M. Cardoso, Airgap-eccentricity fault diagnosis, in three-phase induction motors, by the complex apparent power signature analysis, IEEE Transactions on Industrial Electronics, Vol. 55(Issue 3): 1404-1410, 2008.
https://doi.org/10.1109/tie.2007.909076

S. Nandi, T. C. Ilamparithi, S. B. Lee, and D. Hyun, Detection of eccentricity faults in induction machines based on nameplate parameters, IEEE Transactions on Industrial Electronics, Vol. 58(Issue 5): 1673-1683, 2011.
https://doi.org/10.1109/tie.2010.2055772

A. M. Cardoso, and E. S. Saraiva, Computer-aided detection of air gap eccentricity in operating three-phase induction motors by Park's vector approach, IEEE Transactions on Industry Applications, Vol. 29(Issue 5): 897-901,1993.
https://doi.org/10.1109/28.245712

R. Puche-Panadero, J. Pons-Llinares, J. Roger-Folch, and M. Pineda-Sanchez, Diagnosis of eccentricity based on the Hilbert transform of the startup transient current, Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2009. IEEE International Symposium, pp.1-6, 2009
https://doi.org/10.1109/demped.2009.5292787

D. Hyun, J. Hong, S. B. Lee, K. Kim, E. J. Wiedenbrug, M. Teska, S. Nandi, and I. T. Chelvan, Automated monitoring of airgap eccentricity for inverter-fed induction motors under standstill conditions, IEEE Transactions on Industry Applications, Vol. 47 (Issue 3): 1257-1266, 2011.
https://doi.org/10.1109/tia.2011.2126010

G. Bossio, C. De Angelo, J. Solsona, G.O. Garca and M. I. Valla, Application of an additional excitation in inverter-fed induction motors for air-gap eccentricity diagnosis, IEEE Transactions on Energy Conversion, Vol. 21(Issue 4): 839-847, 2006.
https://doi.org/10.1109/tec.2006.874218

O. Vitek, M. Janda, V. Hajek, and P. Bauer, Detection of eccentricity and bearings fault using stray flux monitoring, Diagnostics for Electric Machines, Power Electronics & Drives (SDEMPED), IEEE International Symposium, pp. 456-461, 2011.
https://doi.org/10.1109/demped.2011.6063663

X. Huang, T. G. Habetler, R. G. Harley, and E. J. Wiedenbrug, Using a surge tester to detect rotor eccentricity faults in induction motors, IEEE Transactions on Industry Applications, Vol. 43(Issue 5): 1183-1190, 2007.
https://doi.org/10.1109/tia.2007.904389

X. Huang, T. G. Habetler and R. G. Harley, Detection of rotor eccentricity faults in a closed-loop drive-connected induction motor using an artificial neural network, IEEE Transactions on Power Electronics, Vol. 22 (Issue 4): 1552-1559, 2007.
https://doi.org/10.1109/tpel.2007.900607

V. P. Mini, and S. Ushakumari, Incipient fault detection and diagnosis of induction motor using fuzzy logic, IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 675-681, 2011.
https://doi.org/10.1109/raics.2011.6069396

I. Culbert, and J. Letal, Signature analysis for on-line motor diagnostics, 61st IEEE Pulp and Paper Industry Conference (PPIC), pp.1-10, 2015.
https://doi.org/10.1109/ppic.2015.7165866

C. Verucchi, J. Bossio, G. Bossio, and G. Acosta, Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA, Mechanical Systems and Signal Processing, Vol. 80: 570-58, 2016.
https://doi.org/10.1016/j.ymssp.2016.04.035

C. Di, X. Bao, H. Wang, Q. Lv, and Y. He, Modeling and analysis of unbalanced magnetic pull in cage induction motors with curved dynamic eccentricity, IEEE Transactions on Magnetics, Vol. 51(Issue 8): 1-7, 2015.
https://doi.org/10.1109/tmag.2015.2412911

J. Faiz, B. M. Ebrahimi, B. Akin, and H. A. Toliyat, Dynamic analysis of mixed eccentricity signatures at various operating points and scrutiny of related indices for induction motors, IET electric power applications, Vol. 4(Issue 1): 1-16, 2010.
https://doi.org/10.1049/iet-epa.2008.0224

X. Han and A. Palazzolo. Unstable force analysis for induction motor eccentricity, Journal of Sound and Vibration, Vol. 370:230-258, 2016.
https://doi.org/10.1016/j.jsv.2016.01.045

A. Negoita. and R. M. Ionescu. Influence of rotor static eccentricity on the noise level of a squirrel cage induction motor. Environment and Electrical Engineering (EEEIC),10th International Conference, IEEE, pp. 1-4, 2011.
https://doi.org/10.1109/eeeic.2011.5874826

X. Luo, Y. Liao, H. A. Toliyat, A. El-Antably, and T. A. Lipo, Multiple coupled circuit modeling of induction machines, IEEE Transactions on Industry Applications, Vol. 31(Issue 2): 311-318, 1995.
https://doi.org/10.1109/28.370279

V. V. Thomas, K. Vasudevan, and V. J. Kumar Online cage rotor fault detection using air-gap torque spectra, IEEE transactions on energy conversion, Vol. 18(Issue 2): 265-270, 2003.
https://doi.org/10.1109/tec.2003.811718

R. Krishnan, Electric motor drives: modeling, analysis, and control. Prentice Hall, 2001.

S. Bindu, and V. V. Thomas, Characteristic signature identification of air-gap eccentricity faults using extended d-q model for three-phase induction motor, Condition Assessment Techniques in Electrical Systems (CATCON), International Conference, IEEE, pp. 157-162, 2015.
https://doi.org/10.1109/catcon.2015.7449526

S. Bindu, and V. V. Thomas, Diagnoses of internal faults of three phase squirrel cage induction motor—A review, Advances in Energy Conversion Technologies (ICAECT), 2014 International Conference, IEEE, pp. 48-54, 2014 .
https://doi.org/10.1109/icaect.2014.6757060

P. Zhang, Y. Du, T. G. Habetler, and B. Lu, A survey of condition monitoring and protection methods for medium-voltage induction motors, IEEE Transactions on Industry Applications, Vol. 47(Issue 1):34-46, 2011.
https://doi.org/10.1109/tia.2010.2090839

Elbouchikhi, E., Choqueuse, V., Benbouzid, M., Condition Monitoring of Induction Motors Based on Stator Currents Demodulation, (2015) International Review of Electrical Engineering (IREE), 10 (6), pp. 704-715.
https://doi.org/10.15866/iree.v10i6.7594

Kouadria, M., Boudinar, A., Bendiabdellah, A., Benouzza, N., Induction Motor Stator Fault Diagnosis by Rotor Slots Harmonics Tracking Using Prony Improved Approach, (2017) International Review of Automatic Control (IREACO), 10 (4), pp. 296-305.
https://doi.org/10.15866/ireaco.v10i4.11880

Essalmi, A., Mahmoudi, H., Bennassar, A., Abbou, A., Zahraoui, Y., Akherraz, M., Real Time Implementation of Sliding Mode Control for Induction Motor Drives Using dSPACE, (2015) International Review of Electrical Engineering (IREE), 10 (1), pp. 36-41.
https://doi.org/10.15866/iree.v10i1.4315

Mejia, W., Rodriguez, D., Rivera, S., Rosero Garcia, J., Heuristic Estimation of Parameters in High-Frequency Models of Induction Motors for Bearing Currents Simulation, (2016) International Review of Automatic Control (IREACO), 9 (6), pp. 355-364.
https://doi.org/10.15866/ireaco.v9i6.9827

Sadiki, L., El Hani, S., Guedira, S., Ouachtouk, I., Assessment of Time Frequency Color Index for Electrical Machines Diagnosis and Fault Severity, (2016) International Review on Modelling and Simulations (IREMOS), 9 (1), pp. 1-10.
https://doi.org/10.15866/iremos.v9i1.7613


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize