Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling of the Human Lower-Limb Motion, Design and Control of Knee Joint Orthosis


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v10i5.11853

Abstract


In this paper, the kinematics of a knee joint is considered. A new type of motion components using rotating and sliding links is proposed. On the basis of the given analysis, a simulating model is created and analysis of human lower-limb motion is performed. Simulation results were compared to the real motion measurement and gave a good correlation. The model of an active orthosis is discussed and orthosis controlling system is considered.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Kinematics; Knee Joint; Simulation; Orthoses

Full Text:

PDF


References


U. Saranli, O. Arslan, M. Ankarali, O. Morgul, Approximate analytic solutions to nonsymmetric stance trajectories of the passive springloaded inverted pendulum with damping. Nonlinear Dynamics, Vol. 62 (Issue 4): 729-742, December 2010.
http://dx.doi.org/10.1007/s11071-010-9757-8

A. Kuo, The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human Movement Science 26: 617-656, 2007.
http://dx.doi.org/10.1016/j.humov.2007.04.003

S. Kajita, F. Kanehiro, K. Kaneko, K. Yok, H. Hirukawa, The 3D Linear Inverted Pendulum Model: A simple modeling for a biped walking pattern generation, International Conference on Intelligent Robots and Systems, 239-246, Maui, Hawaii, USA, Oct. 29 - Nov. 03, 2001.
http://dx.doi.org/10.1109/iros.2001.973365

R. M. Ghigliazza, R. M., Altendorfer, R., Holmes, P., D. Koditschek, D. A simply stabilized running model. SIAM Journal on Applied Dynamical Systems, 2 (2), 187–218, 2013.
http://dx.doi.org/10.1137/s1111111102408311

T. Otani, K. Hashimoto, M. Yahara, S. Miyamae, T. Isomichi, S. Hanawa, M. Sakaguchi, Y. Kawakami, H. Lim, A. Takanishi, Utilization of human-like pelvic rotation for running robot, Frontiers in Robotics and AI, Vol. 2 (Article 17): 1-9, 07/2015.
http://dx.doi.org/10.3389/frobt.2015.00017

H. Lim, Y. Ogura, A. Takanishi, Locomotion pattern generation and mechanisms of a new biped-walking machine, Royal Society, Proceeding A, Vol. 464(2089): 273-288, 2008.
http://dx.doi.org/10.1098/rspa.2007.1908

A. Chigarev, A. Borisov, Simulation of controlled motion of the bipedal anthropomorphic mechanism, Russian Journal of Biomechanics, PNIPU: 74-88, 2010.
http://dx.doi.org/10.1016/j.jbiomech.2009.02.028

K. Dodd, M. Morris, T. Matyas, T. Wrigley, P. Goldie, Lateral pelvic displacement during walking: retest reliability of a new method of measurement, Gait & Posture, Vol. 7, (Issue 3): 243-250, 1988.
http://dx.doi.org/10.1016/s0966-6362(98)00013-7

D. Galdeano, V. Bonnet, M. Bennehar, P. Fraisse, A. Chemori, Partial Human Data in Design of Human-Like Walking Control in Humanoid Robotics. 10th IFAC Symposium on Robot Control, Syroco, Dubrovnik, Croatia, 2012.
http://dx.doi.org/10.3182/20120905-3-hr-2030.00187

T. Ito, Walking Motion Analysis Using Small Acceleration Sensors. International Journal of Simulation: Systems, Science and Technology, Vol. 10, (No. 3): 65-71, 2009.
http://dx.doi.org/10.1109/ems.2008.95

S. Tanaka, K. Motoi, M. Nogawa, K. Yamakoshi, A new portable device for ambulatory monitoring of human posture and walking velocity using miniature accelerometers and gyroscope, 26th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, Vol. 1, 2283 – 2286, 1-5 Sept. 2004.
http://dx.doi.org/10.1109/iembs.2004.1403663

R. Cross, Standing, walking, running, and jumping on a force plate, American Journal of Physics, Vol.67, (No.4): 304-309, 1999.
http://dx.doi.org/10.1119/1.19253

T. Marasovic, M. Cecic, V. Zanchi, Analysis and Interpretation of Ground Reaction Forces in Normal Gait, WSEAS Transactions on Systems, Vol.8, (Issue 6): 1105-1114, 2009.
http://dx.doi.org/10.1016/s0928-4869(00)00014-8

A. Yorozu, T. Moriguchi, M. Takahashi, Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests, Sensors, Vol. 15, (No. 9): 22451-22472, 2015.
http://dx.doi.org/10.3390/s150922451

V. de Araújo, P. Alsina, L. Soares, A. de Medeiros, Generation of Anthropomorphic Movements for an Active Orthosis for Lower Limbs, ABCM Symposium Series in Mechatronics, Vol. 5 (Section VII - Robotics), pp. 1052-1057, 2012.
http://dx.doi.org/10.1109/sbr-lars.2012.46

K. Yuan, A. Parri, T. Yan, L. Wang, M. Minih, Q. Wang, N. Vitiello, A Realtime Locomotion Mode Recognition Method for an Active Pelvis Orthosis, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6196-6201, Sept 28 - Oct 2, 2015.
http://dx.doi.org/10.1109/iros.2015.7354261

J. Obusek, K. Holt, R. Rosestein. The hybrid mass-spring pendulum model of human leg swinging: stiffness in the control of cycle period. Biological Cybernetics, Vol. 73, 139-147, Springer-Verlag, 1995.
http://dx.doi.org/10.1007/s004220050170

A. D. Goodworth, R. J. Peterka. Sensorimotor integration for multisegmental frontal plane balance control in humans. Journal of Neurophysiology, 107 (1), 12–28, 2012.
http://dx.doi.org/10.1152/jn.00670.2010

Zhigailov, S., Musalimov, V., Aryassov, G., Penkov, I., Modelling and Simulation of Human Lower–Limb Motion, (2016) International Review on Modelling and Simulations (IREMOS), 9 (2), pp. 114-123.
http://dx.doi.org/10.15866/iremos.v9i2.8358

K. Karjust, M. Pohlak, J. Majak. (2012). Adhesion measuring method optimization in reinforced composites. Proceedings of the 8th International Conference of DAAAM Baltic Industrial Engineering, 2, 633 – 368, 19-21st April 2012.
http://dx.doi.org/10.3176/eng.2010.4.05

A. Snatkin, T. Eiskop, K. Karjust, J. Majak. Production monitoring system development and modification. Proceedings of the Estonian Academy of Sciences, 64, 567−580, 2015.
http://dx.doi.org/10.3176/proc.2015.4s.04

M. Paavel, A. Snatkin, K. Karjust. PLM optimization with cooperation of PMS in production stage. Archives of Materials Science and Engineering, 60 (1), 38−45, 2013.
http://dx.doi.org/10.1016/j.procir.2017.03.144

Human height. https://en.wikipedia.org/wiki/Human_height, May 2016.

Determine humans’ height by length of the long bones of the skeleton. http://www.forensmed.ru/tools/antr/height.php, May 2016.

I. Ovchinnikov, Human gait modeling using MPC controller, MSc. dissertation, Tallinn University of Technology, Tallinn, Estonia, 2016.
http://dx.doi.org/10.5171/2014.411199

N. Krokhaleva, Orthosis supported human lower limb motion model, MSc. dissertation, Tallinn University of Technology, Tallinn, Estonia, 2016.
http://dx.doi.org/10.5171/2014.411199

N. Turchinovich, Design of knee joint support system, MSc. dissertation, Tallinn University of Technology, Tallinn, Estonia, 2016.
http://dx.doi.org/10.5171/2014.411199

J. Vogel, C. Castellini, P. van der Smagt. EMG-Based Teleoperation and Manipulation with the DLR LWR-III. IEEE/RSJ International Conference on Intelligent Robots and Systems. September 25-30, San Francisco, CA, USA, 2011.
http://dx.doi.org/10.1109/iros.2011.6048345

J. Wang, L. Tang, J. Bronlund. Surface EMG Signal Amplification and Filtering. IEEE/RSJ International Journal of Computer Applications, 0975 – 8887.
http://dx.doi.org/10.5120/14079-2073

C. Stepp, B. Dellon, Y. Matsuoka. Contextual effects on robotic experiments of sensory feedback for object manipulation. IEEE RAS & EMBS International conference on Biomedical Robotics and Biomechatronics, Tokyo, pp. 58-63, 2010.
http://dx.doi.org/10.1109/biorob.2010.5627824

E. Cavallaro, J. Rosen, J. Perry, S. Burns, B. Hannaford. Hillbased model as a myoprocessor for a neural controlled powered exoskeleton arm - parameters optimization. IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005.
http://dx.doi.org/10.1109/robot.2005.1570815


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize