Open Access Open Access  Restricted Access Subscription or Fee Access

A Vortex-In-Cell Method for the Simulation of Viscous Flows


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iremos.v10i5.11851

Abstract


A numerical technique of solving incompressible, vortex-dominated flows is described. The Navier-Stokes equations in velocity-vorticity formulation are integrated by a fractional step algorithm which treats convective motions and diffusive phenomena separately. Convection of vorticity is treated in a Lagrangian fashion, whereas the vorticity diffusion is computed on a grid by finite differences. The two problems are solved and combined at each time-step. The technique is as simple and robust as classical finite difference methods. Although being a bit more dissipative, it still preserves the spectral accuracy of fully Lagrangian vortex methods. The numerical procedure is validated against theoretical, experimental and numerical data from literature.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Vortex Methods; Vortex Dynamics; Vortex-In-Cell Methods

Full Text:

PDF


References


F. Harlow. The Particle-In-Cell method for fluid dynamics. J.Funct. Anal, 9:296–305, 1964.

A. J. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech., 57:785–796, 1973.

G. H. Cottet and P. D. Koumoutsakos. Vortex Methods, Theory and practice. Cambridge University Press, London, 2000.

P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. part I: The case of an isotropic viscosity. part II: The anisotropic case. Math. Comp., 53:485–526, 1989.
http://dx.doi.org/10.1090/s0025-5718-1989-0983559-9

G. Russo and J. Strain. Fast triangulated vortex methods for the 2DEuler equations. J. Comput. Phys., 1993.
http://dx.doi.org/10.1006/jcph.1994.1065

P. A. Raviart. An analysis of particle methods. Numerical methods in fluid dynamics. Springer, pages 243–324, 1985.
http://dx.doi.org/10.1007/bfb0074532

J. T. Beale and A. Majda. High order accurate vortex methods with explicit velocity kernels. J. Comp. Phys., 58:188–208, 1985.
http://dx.doi.org/10.1016/0021-9991(85)90176-7

O. H. Hald. Convergence of vortex methods for Euler’s equations, III. SIAM J. Numer. Anal., 24:538–582, 1987.
http://dx.doi.org/10.1137/0724039

P. Ploumhans and G. Winckelmans. Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. Journal of Computational Physics, 165:54–406, 2000.
http://dx.doi.org/10.1006/jcph.2000.6614

P. Koumoutsakos. Multiscale flow simulations using particles. Annu. Rev. Fluid Mech., 37:457–487, 2005.
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175753

A. Elcrat, M. Ferlauto, and L. Zannetti. Point vortex model for asymmetric inviscid wakes past bluff bodies. Fluid Dyn. Res., 46:031407, 2014.
http://dx.doi.org/10.1088/0169-5983/46/3/031407

R. Donelli, P. Iannelli, S. Chernyshenko, Angelo Iollo, and Luca Zannetti. Flow models for a vortex cell. AIAA Journal, 47(2):451–467, 2009.
http://dx.doi.org/10.2514/1.37662

L. Zannetti, M. Ferlauto, and S.G. Llewellyn Smith. Hollow vortices in shear. J. Fluid Mech, 809:705–715, 2016.
http://dx.doi.org/10.1017/jfm.2016.697

M. Ferlauto and S. Rosa Taddei. Reduced order modelling of full-span rotating stall for the flow control simulation of axial compressors. Proceedings of the Institution of Mechanical Engineering Part A: Journal of Power and Energy, 229(4):359–366, 2015.
http://dx.doi.org/10.1177/0957650915576013

A. Iollo and Luca Zannetti. Trapped vortex optimal control by suction and blowing at the wall. European journal of mechanics. b, fluids, 20:7–24, 2001.
http://dx.doi.org/10.1016/s0997-7546(00)00093-5

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325–348, 1988.
http://dx.doi.org/10.1016/0021-9991(87)90140-9

C-R. Anderson. An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput., 29(3):615–639, 1992.
http://dx.doi.org/10.1137/0913055

M. Ferlauto. Study and control of near-wall vortex structures (in italian). Phd thesis is Aerospace Engineering, Politecnico di Milano, Milan, Italy, 1996.
http://dx.doi.org/10.5176/2425-0112_uppd16.43

R.W. Hockney and J.W. Eastwood. Computer simulation using particles. McGraw-Hill Inc, New York, 1981.
http://dx.doi.org/10.1201/9781439822050

J. P. Christiansen. Numerical simulation of hydrodynamics by the method of point vortices. J. Comput. Phys., 137:363–379, 1973.
http://dx.doi.org/10.1016/0021-9991(73)90042-9

J. Walther and A. Larsen. Two-dimensional discrete vortex method for application to bluff body aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics, 67:183–193, 1997.
http://dx.doi.org/10.1016/s0167-6105(97)00072-x

G. Morgenthal and J. Walther. An immersed interface method for the vortex-in-cell algorithm. Computers and Structures, 85:712–726, 2007.
http://dx.doi.org/10.1016/j.compstruc.2007.01.020

T. L. Doligalski, C. R. Smith, and J. D. A. Walker. Vortex interactions with walls. Ann. Rev. Fluid. Mech.,26:573–616, 1994.
http://dx.doi.org/10.1146/annurev.fl.26.010194.003041

R. I. Lewis. Vortex element methods for fluid dynamic analysis of engineering systems. Cambridge University Press, Cambridge, 1991.
http://dx.doi.org/10.1017/cbo9780511529542

P. Orlandi. Vortex dipole rebound from a wall. Phys. Fluids A, 2(8):1429–1436, 1990.
http://dx.doi.org/10.1063/1.857591

A. J. Chorin. Vorticity and Turbulence. Springer, 1993.
http://dx.doi.org/10.1007/978-1-4419-8728-0

G. Benfatto and M. Pulvirenti. The convergence of the Chorin-Marsden product formula in the half-plane. Comm. Math. Phys., 106:427–258, 1986.
http://dx.doi.org/10.1007/bf01207255

K. G. Batchelor. An Introduction to Fluid Mechanics. Cambridge University Press, 1967.
http://dx.doi.org/10.1017/s0001924000054221

J. Z. Wu, X. Wu, H. Ma, and J.-M. Wu. Dynamic vorticity boundary condition: theory and numerical implementation. International Journal for Numerical Methods in Fluids, 19:905–938, 1994.
http://dx.doi.org/10.1002/fld.1650191004

H. O. Nordmark. Rezoning for higher order vortex methods. Journal of Computational Physics, 97(2):366–397, 1991.
http://dx.doi.org/10.1016/0021-9991(91)90005-6

G. J. F. Van Heijst and J.B. Flor. Laboratory experiments on dipole structures in a stratified fluid. in Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence, (Elsevier), pages 591–608, 1989.
http://dx.doi.org/10.1016/s0422-9894(08)70209-5

P. G. Saffman. The approach of a vortex pair to a plane surface. J.Fluid Mech., 92:497, 1979.
http://dx.doi.org/10.1017/s0022112079000744


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize