Open Access Open Access  Restricted Access Subscription or Fee Access

Maximum Power Point Tracking of Photovoltaic Module for Battery Charging Based on Modified Particle Swarm Optimization

(*) Corresponding author

Authors' affiliations



The Photovoltaic (PV) Module has an important role as a source of renewable energy because it has low maintenance and environmental friendliness. The problem of the PV module is low efficiency. Therefore, this research focus is on the maximization of the PV module. Obtaining the maximum power point (MPP) requires maximum power point tracking (MPPT) methods. In this paper, the modified particle swarm optimization (MPSO) is used to track the MPP. The standard of PSO is modified by updating the inertia weight to obtain faster convergence. A Boost converter is connected between the PV module and the battery. MPPT is used for battery charging to improve energy transfer efficiency. In the simulation results, MPSO is compared with PSO and P&O to evaluate the performance of MPSO. The results demonstrate that MPSO can increase tracking speed to achieve the MPP.
Copyright © 2017 Praise Worthy Prize - All rights reserved.


PV Module; MPPT; Particle Swarm Optimization; Modified Particle Swarm Optimization; Battery Charging

Full Text:



N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method”, IEEE Trans. Energy convers. Vol. 22, no. 4, jul. 2005.

Blorfan, A., Sturtzer, G., Flieller, D., Wira, P., Mercklé, J., An Adaptive Control Algorithm for Maximum Power Point Tracking for Photovoltaic Energy Conversion Systems - A Comparative Study, (2014) International Review of Electrical Engineering (IREE), 9 (3), pp. 559-565.

Melhaoui, M., Baghaz, E., Hirech, K., Yaden, F., Kassmi, K., Contribution to the Improvement of the MPPT Control Functioning of Photovoltaic Systems, (2014) International Review of Electrical Engineering (IREE), 9 (2), pp. 393-400.

K.H. Hussein, I. Muta, T. Hoshino, M. Osakada, “Maximum Photovoltaic Power Tracking: an algorithm for rapidly changing atmospheric conditions”, IEE proc. Gener. Transm. Distrib. vol. 142, no. 1, jan. 1995.

T. Noguchi, S. Togashi, R. Nakatomo, “Short Current Pulse Based Maximum Power Point Tracking Method for Multiple Photovoltaic and Converter Module System”, IEEE Trans. Ind. Electronics. Vol. 49, no. 1, feb. 2002.

C. Dorofte, U. Borup, F. Blaabjerg, “A Combined Two Method MPPT control Scheme For Grid-Connected Photovoltaic Systems”, European conference on Power electronics and applications, 2005.

B. N. Alajmi, K. H. Ahmed, S. J. Finney, B. W. Williams, “Fuzzy logic control approach of a modified hill climbing method for maximum power point in Microgrid Standalone Photovoltaic System”, IEEE Trans. Power Electronics, vol. 26, no. 4, apr. 2011.

Anandhakumar, G., Venkateshkumar, M., Shankar, P., Fuzzy Logic Controller Based MPPT Method of the Photovoltaic Power System, (2014) International Review of Automatic Control (IREACO), 7 (3), pp. 240-244.

Abid, H., Tadeo, F., Toumi, A., Chaabane, M., MPPT of a Photovoltaic Panel Based on Takagi-Sugeno and Fractional Algorithms, (2014) International Review of Automatic Control (IREACO), 7 (3), pp. 245-254.

T. Hiyama, K. Kitabayashi, “Neural Network Based Estimation of Maximum Power Generation from PV module using Environmental Information”, IEEE Trans. energy convers. Vol. 12, no. 3, sep. 1997.

A. Tjahjono, O. A. Qudsi, N. A. Windarko, D. O. Anggriawan, A. Priyadi, M. H. Purnomo, “Photovoltaic Module and Maximum Power Point Tracking Modelling Using Adaptive Neuro Fuzzy Inference System”, Makassar International Conference on Electrical Engineering and informatics, 2014.

K. Sundareswaran, S. Peddapati, S. Palani, “MPPT of PV systems under Partial Shaded Conditions Through a Colony of Flashing Fireflies”, IEEE Trans. energy convers. Vol. 29. No. 2, jun. 2014.

A. Tjahjono, D.O. Anggriawan, A. K. Faizin, A. Priyadi, M. Pujiantara, M. H. Purnomo, “Optimal Coordination of Overcurrent Relays in Radial System with Distributed Generation Using Modified Firefly Algorithm”, International Journal on Electrical Engineering and Informatics, vol. 7, No. 4, Dec. 2015.

Windarko, N.A., Tjahjono, A., Anggriawan, D.O., Purnomo, M.H., “Maximum Power Point Tracking of photovoltaic System Using Adaptive Modified Firelfy Algorithm”, International Electronics Symposium, 2015.

Y. H. Liu, S. C. H., J. W. H, W. C. Liang, “A Particle Swarm Optimization Based Maximum Power Point Tracking Algorithm for PV Systems Operating Under Partially Shaded Conditions”, IEEE Trans. Energy convers. Vol. 27, no. 4, dec. 2012.

j. Kennedy, “Particle Swarm Optimization”, Encyclopedia of machine learning, springer, 2011.

M. M. Mansour, S.F.Mekhamer, N.E.El-kharbawe, “A modified Particle Swarm Optimizer for the coordination of directional overcurrent relays”, IEEE Trans. Power Del, Vol. 22, no.3, Jul. 2007.

M. Farzinfar, M. Jazaeri, F. Razavi, “A new approach for optimal coordination of distance and directional over-current relays using multiple embedded crossover PSO”, Electric power and energy systems vol. 61, pp. 620-628, 2014.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize