Open Access Open Access  Restricted Access Subscription or Fee Access

The Optimization of Reinsurance by the Maximization of Technical Benefits and Minimization of Probability of Ruin Using Genetic Algorithms

(*) Corresponding author

Authors' affiliations



The ruin theory is a crucial tool for the insurance company and it is a very important factor in choosing an optimal reinsurance. However this single optimization criterion does not usually lead to a rational decision to choose an optimal reinsurance plan. In this paper, we propose an approach for optimizing a reinsurance strategy which is based on maximizing technical benefit of the insurer and the minimization of the probability of ruin simultaneously and dynamically using genetic algorithms. This approach uses a database that contains the forms of reinsurance and pricing methods. This work is a decision support tool for insurance companies.
Copyright © 2016 Praise Worthy Prize - All rights reserved.


Optimization; Insurance; Reinsurance; Technical Benefit; Pricing Method; Form Reinsurance Ruin Probability; Genetic Algorithms

Full Text:



Abderrahim El Attar, Mostafa El hachloufi, Zine El AbdineGuennoun, Optimizing the technical benefits of the insurance company using genetic algorithms, Applied Mathematical Sciences, Décembre 2015 Vol. 9, 2015, no. 150, 7453-7466.

Asmussen S (2000), Ruin Probabilities, World Scientic, Singapure.

Blazenko (1985), Optimal insurance policies, Insurance: Mathematics and Economics, Vol. 4, 1985.

Borch (1960), Reciprocal reinsurance treaties,The ASTIN Bulletin, Vol. 1, 1960.

Borch, K (1960), An attempt to determine the optimum amount of stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 597-610.

Borch, K (1969), The optimal reinsurance treaty, Astin Bulletin, vol. 5, no.2, 293-297.

Cai& Tan (2007), Optimal Retention for a Stop-Loss Reinsurance Under the VaR and CTERisk Measures, ASTIN Bulletin 2007.

Cantu-Paz E (2000), Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic Publishers, 2000.

Cnam (2002-2003), Mathématiques actuarielles fondamentales (assurance non vie) Eléments de cours – 17 mars 2003. La réassurance.

Daykin C.D., Pentik amen T. and Pesonen M. (1994). Practical Risk Theory for Actuaries, Chapman & Hall, London.

De Finetti (1940), Il problema dei pieni, Giorn. Ist. Ital. Attuari, Vol.1, 1940.

Deestra& Plantin (2004), La réassurance, Economica, 2004.

Enteno, M. d. L. (2002b), `Measuring the effects of reinsurance by the adjustment coefficient in the sparreanderson model', Insurance: Mathematics and Economics 30(1), 37-49.

Gerber, H. U. &Dufresnes, F. (1991b), `Three methods to calculate the probability of ruin', Astin Bull. 19(1), 71/90.

Goldberg D.E and Lingle R., Alleles, Loci, and the TSP (1985), Proceedings of the First International Conference on Genetic Algorithms, pp 154-159.

Goldberg, D. E (1989), “Genetic Algorithms in search, optimization and Machine learning”, Addison-Wesley.

Grandell, J. (1997). Mixed Poisson Processes, Chapman & Hall, London.

Hald, M. &Schmidli, H. (2004), `On the maximisation of the adjustment coefficient under proportional reinsurance.',Astin Bull. 34.

Hess (2000), Méthodes actuarielles de l’assurance vie,Economica.

Huiming Zhu, Chao Deng, ShengjieYue, Yingchun Deng, Optimal reinsuranceand investment problem for an insurer with counterparty risk, Insurance:Mathematics and Economics, Volume 61, March 2015, Pages 242-254, ISSN0167-6687.

Ignatove, Kaishev&Krachunov (2004), Optimal retention levels, given the joint survival of cedent and reinsurer,Scandinavian Actuarial Journal 6, 2004.

Ismayil, C., Sreerama Kumar, R., Sindhu, T.K., Fuzzy logic and genetic algorithm based automatic generation control of two-area deregulated power systems, (2014) International Review of Electrical Engineering (IREE), 9 (1), pp. 186-199.

Kaas R., Goovaerts M., Dhaene J. and Denuit M. (2001). Modern Actuarial Risk Theory, Klawer, Boston.

Krvavych (2005), Insurer Risk Management and Optimal Reinsurance, PhD Thesis, The University Of New South Wales.

L. Davis (1991), The genetic Algorithm Handbook. Ed. New- York: Van Nostrand Reinhold, ch.17, 1991.

LedaD.Minkova, Insurance Risk Theory. (2010).

Lutton, E (1999), Algorithmes génétiques et Fractales. Dossier d'habilitation à diriger des recherches, Université Paris XI Orsay, 11 Février 1999.

M. Denuit, A (2004), Charpentier, Mathématiques de l’assurance non vie, tome 1 : Principes fondamentaux de théorie du risque. Economica 2004.

M. El Hachloufi, Z. Guennoun& F. Hamza (2012), “Stocks Portfolio Optimization Using Classification and Genetic Algorithms”Applied Mathematical Sciences, Vol. 6,N° 94, pp. 4673 – 4684.

M. Elhachloufi, Z.Guennoun, F.Hamza (2013), Stocks Portfolio Optimization using Neural Network and Genetic Algorithm, International Research Journal of Finance and Economics, ISSN 1450-2887 Issue 104 (2013).

M. Elhachloufi, Z.Guennoun, F.Hamza (2012), Optimization of Stocks Portfolio Using GeneticAlgorithms and Value at Risk, International Journal of Mathematics and Computation, Vol. 20.

Makram Ben Dbabis, Modèles et méthodes actuarielles pour l’évaluation quantitative des risques en environnement Solvabilité II, Université Paris Dauphine. (2013).

Moffet (1979), The risk sharing problem, Geneva Papers on Risk and Insurance, Vol 5,1979.

Patrick, G (2004), Reinsurance, Encyclopedia of Actuarial Science, Wiley, 1400-1403.

Raviv (1979), The design of an optimal insurance policy, American Economic Review, Vol 69, 1979.

Renders, J.M (1995), Algorithmes génétiques et Réseaux de Neurones, Editions HERMES.

Rytgaard, M (2004), Stop-loss reinsurance, Encyclopedia of Actuarial Science, Wiley.

Saravanan, M., Sridhar, S., Harikannan, N., Application of meta-heuristics for minimization of makespan in multi-stage hybrid flow shop scheduling problems with missing operations, (2014) International Review of Mechanical Engineering (IREME), 8 (5), pp. 916-923.


Schmidli (2001), Optimal proportinal reinsurance policies in a dynamic setting,Scandinavian Actuarial Journal, Vol. 1, 2001.

Schmidli (2004), Asymptotics of Ruin Probabilities for Risk Processes under Optimal Reinsurance and Investment Policies:the Large Claim Case, Scand. Actuarial J. (2004).

Sheng Chao Zhuang, ChengguoWeng, Ken Seng Tan, HirbodAssa, Marginal Indemnification Function formulation for optimal reinsurance, Insurance: Mathematics and Economics, Volume 67, March 2016, Pages 65-76, ISSN0167-6687.

Silvia Dedu, Optimization of some risk measures in Stop-loss reinsurance with multiple retention levels

Szergö, G, (2002), ‘No more VaR’Journal of Banking & Finance, 26, pp. 1247.1252.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2024 Praise Worthy Prize