Modelling of Hydrogen Microwave Plasma in the Conditions of Diamond Deposition

Mohamed El Haim(1*), Mimoun El Hammouti(2), Hassan Chatei(3), Mohamed El Bojaddaini(4), Mohamed Atounti(5)

(1) Multidisciplinary Faculty of Nador, University Mohammed First-Oujda, Morocco
(2) Multidisciplinary Faculty of Nador, University Mohammed First-Oujda, Morocco
(3) Faculty of Science, University Mohammed First-Oujda, Morocco
(4) Faculty of Science, University Mohammed First-Oujda, Morocco
(5) Multidisciplinary Faculty of Nador, University Mohammed First-Oujda, Morocco
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


A 2D-fluid plasma model has been developed for a microwave cavity plasma reactor used for diamond thin film deposition. Dependencies of discharge characteristics on the main physical parameters namely the hydrogen pressure and the microwave power density have been numerically studied. The pure hydrogen plasma characteristics, such as electron density, electron temperature and electric potential are simulated by applying a COMSOL MWP module based on finite element method to solve electron continuity and electron energy equations coupled with Poisson’s equation. This present paper provides the spatial and temporal evolutions of different discharge characteristics for various input conditions. It is shown that the electron density was in the range (5×1016-8×1017)m-3 for the pressure range of (40-60)Torr. It is also clearly shown that as the power density increases the electron density increases and that the electron temperature and electric potential vary slightly with gas pressure and microwave power density.

Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Fluid Plasma Model; Finite Element Method; COMSOL MWP Module; Microwave Plasma

Full Text:

PDF


References


F. David, B. Graves and M. J. Kushner, « Influence of Modelling and Simulation on the Maturation of Plasma Technology : Feature and Reactor Design », Journal of Vacum Science Technology, A21, S152-6, 2003.

I. P. Ganachev and H. Sugai, « Production and control of planar microwave plasmas for materials processing », Plasma Sources Sci. Technol. 11 A178-A190, 2002.

J. van Dijk, G. M. W. Kroesen, A. Bogaerts, Plasma Modelling and Numerical Simulation, J. Phys. D: Appl. Phys. 42, 190301, 2009.

M. El Bojaddaini, H. Chatei, M. Atounti, M. El Haim, I. Driouch, M. El Hammouti, Numerical Study of Microwave Plasma Characteristics in Moderate Pressure used for Diamond Deposition, Adv. Studies Theor. Phys., Vol. 7, no. 22, 1071-1085, 2013.

A. Gicquel, C. Héau, D. Fabre,and J. Perrière, “Processes and Parameters for Diamond Deposition”, Diamond and Related Materials, 1 (7), 776-781, 1992.

E. Havlíc ̃ková, Fluid Model of Plasma and Computational Methods for solution, WDS’06 Proceedings of Contributed Papers, Part III, 180-186, 2006.

G. J, M. Haagelaar, L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma sources Sci. Technol. 14, 722-733, 2005.

M. El Bojaddaini, H. Chatei, M. Atounti, M. El Haim, I. Driouch, M. El Hammouti, Numerical Simulation of Hydrogen Microwave Plasma Discharge Using a Fluid Model Approach, Applied Mathematical Sciences, Vol. 6, no. 121:6003-6019, 2012.

S. K. Lakshmanan, W. N. Gill, A Novel Model of Hydrogen Plasma Assisted Chemical Vapor Deposition of Copper, Thin Solid Films 338: 24-39, 1999.

E. Neyts, M. Yan, A. Bogaerts, R. Gijbels, Particle-in-cell/Monte Carlo Simulations of a Low-Pressure Capacitively Coupled Radio-Frequency Discharge: Effect of Adding H2 to an Ar Discharge, J. Appl. Phys., Vol. 93, No. 9, 2003.

W. Tan, T. A. Grotjohn, “Modeling the Electromagnetic Field and Plasma Discharge in a Microwave Plasma Diamond Deposition Reactor”, Diamond and Related Materials 4, 1145-1154, 1995.

S. Pancheshnyi, S. Biagi, M. C. Bordage, G. J. M. Hagelaar, W. L. Morgan, A. V. Phelps, L. C. Pitchford, The LXCat Project: Electron Scattering Cross Sections and Swarm Parameters for Low Temperature Plasma Modeling, Chemical Physics 398:148-153, 2012.

K. Hassouni, F. Silva and A. Gicquel, Modelling of diamond deposition microwave cavity generated plasmas, J. Phys, D: Appl. Phys., 43, 15. 2010.

A. Gicquel, K. Hassouni, F. Silva and J. Achard, CVD diamond films : from growth to applications, Current Applied Physics, 1, 6, 479-496, 2001.

A. Gicquel, N. Derkaoui, C. Round, F. Benedic, G. Cicala, D. Moneger and K. Hassouni, quantitative analysis of diamond deposition reactor efficiency, Chemical Physics, 398, 239-247, 2011.

H. Chatei, J. Bougdira, M. Remy, P. Alnot, C. Bruch, JK. Kruger, Effect of nitrogen concentration on plasma reactivity and diamond in H2-CH4-N2 microwave-discharge, Diamond and Related Materials, 6 (1), 107-119, 1997.

K. Hassouni, O. Leroy, S. Farhat , A. Gicquel, Modelling of H2 and H2/CH4 moderate- pressure microwave plasma used for diamond deposition, Chem. Plasma Process., 18 (3), 325-362, 1998.

El Haim, M., El Hammouti, M., Chatei, H., Atounti, M., El Bojaddaini, M., COMSOL multiphysics simulations of the hydrogen microwave plasma characteristics, (2013) International Review on Modelling and Simulations (IREMOS), 6 (6), pp. 1979-1986.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2021 Praise Worthy Prize