Multimodel Modeling of Doubly Fed Induction Motor

A. Abid(1*), M. Ben Hamed(2), L. Sbita(3)

(1) National Engineering School of Gabès (ENIG), Electrical- Automatic department, Gabès, Tunisia
(2) National Engineering School of Gabès (ENIG), Electrical- Automatic department, Gabès, Tunisia
(3) National Engineering School of Gabès (ENIG), Electrical- Automatic department, Gabès, Tunisia
(*) Corresponding author

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


As the electric drives are highly complex and nonlinear systems subject of several disturbances, it is a great problem to represent them via a unique model with sufficient precision and simple structure. Thus, this paper presents a new doubly fed induction motor (DFIM) model based on multimodel approach as a robust modeling method able to replace the complex system by a set of simpler local models. This approach consists of four steps which are clusters estimation, structure identification, parametric identification and local models combination. The collected data on DFIM are, firstly, clustered into several groups through a Chui’s clustering algorithm. Then, the structure identification is performed on each group using the instrumental ratio (RDI) method. Parameters of each sub model are identified using recursive least square (RLS) method. Finally, obtained sub models are combined using the validity concept. A detailed dynamic model of a DFIM with grid-connected stator and PWM inverter connected rotor, side is presented in the dq-synchronous reference frame in order to generate the input/output data. Simulation results are presented and analyzed up under Matlab/Simulink environment
Copyright © 2014 Praise Worthy Prize - All rights reserved.


DFIM; Multi Model Approach; Chui’s Clustering Algorithm; Modeling

Full Text:



M. Hasni, Z. Mancer, S. Mekhtoub, S. Bacha, Parametric identification of the doubly fed induction machine, Energy Procedia, vol. 18, 2012, pp. 177 – 186.

A. Ourici, Double flux orientation control for a doubly fed induction machine, Electrical Power and Energy Systems, vol. 43, 2012, pp. 617–620.

I. Lopez-Garcìa, G. Espinosa-Perez, H. Siguerdidjane, A. Dòria-Cerezo, On the passivity-based power control of a doubly-fed induction machine, Electrical Power and Energy Systems, vol. 45, 2013, pp. 303–312.

V. Verma, S. Maiti, C. Chakraborty, Grid-connected vector-controlled slip-ring induction machine drive without speed sensor, Simulation Modelling Practice and Theory, vol. 18, 2010, pp. 984–997.

S. Ghoudelbourk, T. Bahi, Y. Soufi, S. Lekhchine , Separate Powers Control Structure of Doubly fed Induction Machine Based on Fractional Regulator, Energy Procedia, vol. 18, 2012, pp. 486 – 495.

A. Akhenak, Conception d’observateurs non linéaires par approche multi-modèle, Ph.D. dissertation, Loraine Univ., France, 2004.

R. Orjuela, Contribution à l’estimation d’état et au diagnostic des systèmes représentés par des multimodèles, Ph.D. dissertation, Loraine Univ., France, 2008.

M. Oudghiri, Commande multi-modèles tolérante aux défauts : Application au contrôle de la dynamique d'un véhicule automobile, Ph.D. dissertation, Picardie Jules Verne, 2008.

Y. Piguet, U. Holmberg and R. Longchamp, A minmax approach for multi-objective controller design multiple models, IEEE International Journal of control, vol. 72, 1999, pp. 716 – 726.

Elom Domlan, Biao Huang, Fangwei Xu, Aris Espejo “A decoupled multiple model approach for soft sensors design”, Control Engineering Practice 19, pp.126–134, 2011.

Th. H. GoÈttschea, K. J. Hunta, T. A. Johansen, Nonlinear dynamics modelling via operating regime decomposition, Mathematics and Computers in Simulation, vol. 46, 1998, pp. 543 – 550.

Aicha, A., Mouna, B.H., Lassaâd, S., Induction motor real time application of multimodel modeling approach, (2011) International Review of Electrical Engineering (IREE), 6 (2), pp. 655-660.

A. Abid, A. Adouni, M. Ben Hamed and L. Sbita, “A New Pv Cell Model Based On Multi Model Approach”, The Fourth International Renewable Energy Congress, Sousse, Tunisia, pp, 20-22, December 2012.

Z. Kardous, N. Benhadj Braiek and A. El Kamel, on the residue formulation in multimodel controllers, IEEE SMC International Conference on SMC ~SMC 2002~, 2002, Tunisia.

S. L. Chiu, Fuzzy Model Identification Based On Cluster Estimation, Journal of Intelligent and Fuzzy Systems, vol. 2, 1994, pp. 267 – 278.

P. Angelova, E. Lughofer, X. Zhou, Evolving fuzzy classifiers using different model architectures, Fuzzy Sets and Systems, vol. 159, 2008, pp. 3160 – 3182.

T. Üstüntaş, A. D. Şahin, Wind turbine power curve estimation based on cluster center fuzzy logic modeling, Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, pp. 611 – 620, 2008.

Wang, H., Qian, Y., Yao, L., Huang, C., Jiang, X., Fuzzy clustering analysis for PD signals in GIS based on the validity index, (2010) International Review of Electrical Engineering (IREE), 5 (5), pp. 2446-2451.

Chang, W.-Y., Application of fuzzy C-means clustering approach and genetic algorithm to partial discharge pattern recognition, (2012) International Review of Electrical Engineering (IREE), 7 (4), pp. 5213-5220.

G. Abad, J. López, M. A. Rodríguez, L. Marroyo, G. Iwanski, “Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation,” 709p, John Wiley & Sons. Sept. 2011.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2021 Praise Worthy Prize