COMSOL Multiphysics Simulations of the Hydrogen Microwave Plasma Characteristics

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


This paper presents the numerical simulation of a MPACVD (Microwave Plasma Assisted Chemical Vapor Deposition) reactor used for diamond thin film deposition. A COMSOL MWP module, based on fluid plasma model, has been used to study impact of hydrogen pressure and incident microwave power on plasma discharge characteristics such as electron density, electron temperature and electric potential, at low pressure. It is clearly shown that the plasma volume increases either by augmenting power and keeping a constant pressure or by decreasing pressure while maintaining a constant power. It is also seen that uniformity of the plasma is obtained as the gas pressure is decreased, and that electron density increases significantly as a function of pressure and power. However, electron temperature varies in the opposite direction of the electron density, in the ranges of power and gas pressure studied. Results also indicate that electric potential increases by augmenting the incident power and maintaining a constant pressure or decreasing the pressure while keeping a constant power. Comparisons between model and experimental results are mainly satisfactory and support the fact that average electron density varies in the range of (〖1×10〗^17÷〖8×10〗^17)m^(-3) for the input power range (50W-300W) at a given pressure value (1.5Torr).
Copyright © 2013 Praise Worthy Prize - All rights reserved.


COMSOL MWP Module; Microwave Plasma; Fluid Model; Low Pressure

Full Text:



D. Kikukawa, M. Hori, K. Honma, M. Yamamoto, T. Goto, S. Takahashi and S. Den, Development of a low pressure microwave excited plasma and its application to the formation of microcrystalline silicon films, J. Vac. Sc. Technol. A 24:2128, 2006.

M. Meyyappan and T. R. Govindan, Coupled Model of Neutral Transport and Charged Species Dynamics in High Density Plasma Reactors, J. Appl. Phys. 78: 6432, 1995.

D. Benyoucef, Modélisation Particulaire et Multidimensionnelle des Décharges Hors Equilibre à Basse Pression Excités par Champs Electromagnétiques, Ph.D. dissertation, Dept Elect. Eng, Toulouse III – Paul Sabatier Univ, Mai 2011.

J. van Dijk, G. M. W. Kroesen, A. Bogaerts, Plasma Modelling and Numerical Simulation, J. Phys. D: Appl. Phys. 42, (14pp): 190301, 2009.

M. El Bojaddaini, H. Chatei, M. Atounti, M. El Haim, I. Driouch, M. El Hammouti, Numerical Simulation of Hydrogen Microwave Plasma Discharge Using a Fluid Model Approach, Applied Mathematical Sciences, Vol. 6, no. 121:6003-6019,2012.

J. Paraszczak and J. Heidenreich, Applications of microwave plasmas in microcircuit fabrication, chapter 15, Microwave Excited Plasmas, edited by Michel Moisan, Jacques Pelletier, (Plasma Technology, 1992, 4).

K. Nagayama, B. Farouk, Y. H. Lee, IEEE Transactions on Plasma Science, 26, 125:1998.

J. D. P. Passchier and W. J. Goedheer, J. Appl. Phys. 74 (6), 15: September 1993.

Kraloua, B., Hennad, A., Bidimensional modelling non-equilibrium fluid model of glow discharge at low pressure, (2010) International Review of Electrical Engineering (IREE), 5 (6), pp. 2653-2656.

A. Bogaerts, E. Bultinck, M. Eckert, V. Georgieva, M. Mao, E. Neyts and L. Schwaederle, Computer Modeling of Plasmas and Plasma-Surface Interactions, Plasma Process. Polym. 6:295-307, 2009

A. Gicquel, K. Hassouni, F. Silva and J. Achard, Current Applied Physics 1:479-496, 2001.

T. A. Grotjohn, J. Asmussen, J. Sivagnaname, D. Story, A. L. Vikharev, A. Gorbachev and A. Kolysko, Electron Density in moderate Pressure Diamond Deposition Discharges, Diamond and Related Materials 9: 322-327, 2000.

H. Yamada, A. Chayahara, Y. Mokuno, Y. Soda, Y. Horino and N. Fujimori, Diamond & Related Materials 1: 1776-1779, 2005.

E. Havlíc ̃ková, Fluid Model of Plasma and Computational Methods for solution, WDS’06 Proceedings of Contributed Papers, Part III, 180-186, 2006.

G. J, M. Haagelaar, L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma sources Sci. Technol. 14: 722-733, 2005.

V. E. Golant, A. P. Zhilinsky, I. E. Sakharov, Fundamentals of Plasma Physics, (Wiley, New York, 1980).

F. F. Chen, L. L. Raja, Fluid Modeling of Electron Heating in low Pressure, High-Frequency Capacitively Coupled Plasma Discharges, Journal of Applied Physics, 96: 6073, 2004.

J. Y. Liu, Y. Gao, G. Wang, Main Reaction Process Simulation of Hydrogen Gas Discharge in Cold Cathode Electric Vacum Device, PRAMANA-Journal of Physics, Vol. 79, No. 1: 113-124, July 2012.

S. Pancheshnyi, S. Biagi, M. C. Bordage, G. J. M. Hagelaar, W. L. Morgan, A. V. Phelps, L. C. Pitchford, The LXCat Project: Electron Scattering Cross Sections and Swarm Parameters for Low Temperature Plasma Modeling, Chemical Physics 398:148-153, 2012.

Plasma Data Exchange Project, Biagi-v8.9 database,, retrieved October 11, 2012.

Plasma Data Exchange Project, IST-Lisbon collection,, retrieved April 11, 2012.

L. Latrasse, Conception, Caractérisation et Applications des Plasmas Micro-onde en Configuration Matricielles, Ph.D dissertation, Joseph Fourier Univ, 2006.

S. K. Lakshmanan, W. N. Gill, A Novel Model of Hydrogen Plasma Assisted Chemical Vapor Deposition of Copper, Thin Solid Films 338: 24-39, 1999.

E. Neyts, M. Yan, A. Bogaerts, R. Gijbels, Particle-in-cell/Monte Carlo Simulations of a Low-Pressure Capacitively Coupled Radio-Frequency Discharge: Effect of Adding H2 to an Ar Discharge, J. Appl. Phys., Vol. 93, No. 9: May 2003.

H. Chatei, Etude du Procede de Croissance du Diamant en Plasma Micro-Onde, Ph.D. dissertation, Mohamed 1st Univ, Oujda, Morocco, 1997.

W. Tan, T. A. Grotjohn, Modeling the Electromagnetic Field and Plasma Discharge in a Microwave Plasma Diamond Deposition Reactor, Diamond and Related Materials 4:1145-1154, 1995.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize