Design and Simulation of PV Driven Three Phase Induction Motor


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


This Solar pumps have proven to be a cost-effective and dependable method for providing water in situations where water resources are spread over long distances and power lines are few or non-existent. The main objective of this paper is to design and simulate the photovoltaic driven three phase induction motor with increased efficiency by maximum power point tracking and proportional integral controller method. The system consists of three phase induction motor driven pump load supplied from PV generators via a dc–dc step-up converter with MPPT control and a six-step voltage source dc–ac inverter with PI controller. This system provides us the efficient way of controlling the three phase induction motor for irrigation purpose.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Maximum Power Point Tracking; PI Controller; PV; Induction Motor; Pushpull Converter

Full Text:

PDF


References


[1] Montiê Alves Vitorino, Maurício Beltrão de Rossiter Corrêa,Cursino Brandão Jacobina, and Antonio Marcus Nogueira Lima, An Effective Induction Motor Control for Photovoltaic Pumping, IEEE Trans.Ind.Electronics, vol. 58, no. 4, pp.1162-1170 April 2011.

[2] Y. Chen and K. Smedley, A cost-effective single-stage inverter with maximum power point tracking, IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1289–1294, Sep. 2004.

[3] D. Holmes, P. Atmur, C. Beckett, M. Bull, W. Kong, W. Luo, D. Ng, N. Sachchithananthan, P. Su, D. Ware, and P. Wrzos, An innovative, efficient current-fed push–pull grid connectable inverter for distributed generation systems, in Proc. IEEE PESC, 2006, pp. 1–7.

[4] R. Gules, J. D. P. Pacheco, H. L. Hey, and J. Imhoff, A maximum power point tracking system with parallel connection for PV stand-alone applications, IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2674–2683, Jul. 2008.

[5] N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, Distributed maximum power point tracking of photovoltaic arrays: Novel approach and system analysis, IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2610– 2621, Jul. 2008.

[6] J.-M. Kwon, B.-H. Kwon, and K.-H. Nam, Three-phase photovoltaic system with three-level boosting MPPT control, IEEE Trans. Ind. Electron., vol. 23, no. 5, pp. 2319–2327, Sep. 2008.

[7] N. Femia, G. Petrone, G. Spagnuolo, andM. Vitelli, Optimization of perturb and observe maximum power point tracking method, IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005.

[8] W. Xiao,M. G. J. Lind,W. G. Dunford, and A. Capel, Real-time identification of optimal operating points in photovoltaic power systems, IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1017–1026, Jun. 2006.

[9] K. K. Tse, B. M. T. Ho, H. S. H. Chung, and S. Y. R. Hui, A comparative study of maximum-power-point trackers for photovoltaic panels using switching-frequency modulation scheme, IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 410–418, Apr. 2004.

[10] W. Xiao, N. Ozog, and W. G. Dunford, Topology study of photovoltaic interface for maximum power point tracking, IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1696–1704, Jun. 2007.

[11] W. Xiao, W. G. Dunford, P. R. Palmer, and A. Capel, Application of centered differentiation and steepest descent to maximum power point tracking, IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2539–2549, Oct. 2007.

[12] J.W. Kimball and P. T. Krein, Discrete-time ripple correlation control for maximum power point tracking, IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2353–2362, Sep. 2008.

[13] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, A variable step size INC MPPT method for PV systems, IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, Jul. 2008.

[14] M. Fortunato, A. Giustiniani, G. Petrone, G. Spagnuolo, and M. Vitelli, Maximum power point tracking in a one-cycle-controlled single-stage photovoltaic inverter, IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2684–2693, Jul. 2008.

[15] V. V. R. Scarpa, S. Buso, and G. Spiazzi, Low-complexity MPPT technique exploiting the PV module MPP locus characterization, IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531–1538, May 2009.

[16] J.-H. Park, J.-Y. Ahn, B.-H. Cho, and G.-J. Yu, Dual-module-based maximum power point tracking control of photovoltaic systems, IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1036–1047, Jun. 2006.

[17] T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control, IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1282–1291, Sep. 2006.

[18] M. Vitorino, L. Hartmann, A. Lima, and M. Correa, Using the model of the solar cell for determining the maximum power point of photovoltaic systems, in Proc. EPE, 2007, pp. 1–10.

[19] T. Esram and P. L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques, IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.

[20] C. Rodriguez and G. A. J. Amaratunga, “Analytic solution to the photovoltaic maximum power point problem,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 9, pp. 2054–2060, Sep. 2007.

[21] G. Carannante, C. Fraddanno, M. Pagano, and L. Piegari, Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation, IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4374–4380, Nov. 2009.

[22] D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, Optimized maximum power point tracker for fast changing environmental conditions, in Proc. IEEE ISIE, 2008, pp. 2401–2407.

[23] E. Muljadi, PV water pumping with a peak-power tracker using a simple six-step square-wave inverter, IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 714–721, May/Jun. 1997.

[24] H. Patel and V. Agarwal, Maximum power point tracking scheme for PV systems operating under partially shaded conditions, IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1689–1698, Apr. 2008.

[25] L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions, IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1548–1556, May 2009.

[26] Francisco M. González-Longatt, Model of Photovoltaic Module in Matlab™, 2do congreso iberoamericano de estudiantes de ingeniería eléctrica, electrónica y computación (ii cibelec 2005), pp 1-5, 2005.

[27] Watanakul, N., Pattanasethanon, S., Aurasopon, A., An application of photovoltaic cell for improving the electrical power quality, (2010) International Review of Electrical Engineering (IREE), 5 (5), pp. 2293-2300.

[28] Ramaprabha, R., Santhosh, K., Mathur, B.L., Implementation of Solar Photovoltaic source fed current source inverter, (2011) International Review of Electrical Engineering (IREE), 6 (7), pp. 3016-3025.

[29] Gonzalez, D., Ramos-Paja, C.A., Petrone, G., Automated procedure for calculating the controller parameters in photovoltaic DC/DC converters, (2011) International Review of Electrical Engineering (IREE), 6 (7), pp. 3027-3040.

[30] Chao, K.H., Chiu, C.L., Design and implementation of an intelligent maximum power point tracking controller for photovoltaic systems, (2012) International Review of Electrical Engineering (IREE), 7 (2), pp. 3759-3768.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize