Numerical Simulation of Compressible Thermo-Buoyant Flow in a Partially Opened Enclosure with Localized Heater from Below

S. Ben Mabrouk(1*), H. Ben Ahmed(2)

(1) Laboratory for Energy and Thermal Processes, C.R.T.En. Centre for Research and Technologies of Energy, Po. Box 95, 2050 Hammam-Life. Tunis, Tunisia
(2) Faculté des Sciences de Tunis (F.S.T.); - Department of Physics Campus Universities El Manar I, 1060 Tunis, Tunisia
(*) Corresponding author

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


We present two numerical models for the study of unsteady two-dimensional flow of air subjected to a heat source in a cell divided into two areas of different size by a vertical lintel. The heat source placed on the floor of the enclosure produces hot gases for a finite time. First numerical model based on solving the equations of conservation of mass, momentum and energy, uses an implicit scheme in time and a finite difference hybrid space. The injection of hot gas in the two areas led to the abandonment of the Boussinesq hypothesis. This model also takes into account variations in the physical properties of the fluid. The second model is a finite element approach which gave more detailed results, thanks to the high density of the mesh node and the incorporation of the boundary conditions in the general equations of the problem. Dynamically, the results are very significant in terms of the flow direction, circulation areas and creation of vortices. The results for two simple cases of a cell partitioned allowed us to know the characteristics of the flow adjacent to the heat source and through the two compartments of the enclosure.
Copyright © 2013 Praise Worthy Prize - All rights reserved.


Convection; Flow Structure; Finite Elements; Numerical Simulation; Thermal Plume

Full Text:



S. Ostrach, Natural convection in enclosures. ASME J. Heat Transfer, vol. 110, pp: 1175 – 1190; 1988.

M. Kaviany, Principles of Convective Heat Transfer. Springer Verlag Edn., New York, 2001.

Y. Tasaka, Y. Takeda, Effects of heat source distribution on natural convection induced by internal heating, International Journal of Heat and Mass Transfer; ( 48), 1164 – 1174. 2005.

A.K. Sharma, K. Velusamya, C. Balaji, Turbulent natural convection in an enclosure with localized heating from below. International Journal of Thermal Sciences, (46) 1232–1241. 2007.

A. Bairi, J.M. Garcia de Maria, N. Laraqi, Transient natural convection in parallelogrammic enclosures with isothermal hot wall. Experiemental and numerical study applied to on-board electronics, Applied Thermal Energeeing, Vol 30, pp.1115-1125, 2010.

P. Le Quéré, Étude de la transition à l’instationnarité des écoulements de convection naturelle en cavité verticale differentiellement chauffée par méthodes spectrales Tchebychev. Thèse de Doctorat d’Etat; Université de Poitiers, LES/CNRS – France, 1987.

G. Lauriat, Contribution à la modélisation et à la simulation numérique de l’interaction entre la convection naturelle et le rayonnement thermique. Thèse de Doctorat d’Etat. Université de Paris VI. France, 1983.

R. Bennacer, L.Y. Sun, Y. Toguyeni, D. Gobin - Int. J. Heat Mass Transfer, 36(13), 3329 - 3342, 1985.

R. F. Bergholz – Instability of steady natural convection in a vertical fluid layer. Journal Fluid Mech. 81 – 88, 1978.

G. de Vahl Davis, Natural convection of air in a square cavity: A benchmark numerical solution. Int. J. Num. Meth. Fluids, 3, pp. 249–264. 1983.

P. Le Quéré., Accurate solutions to the square thermally driven cavity at high Rayleigh number. Computer and Fluids. 20, pp: 01-21. 1990.

E.Sourtiji, S.F. Hosseinizadeh, M.Gorji-Bandpy, Numerical simulation of compressible high gradient thermobuoyant flow in square enclosures with localized heating from below, International Communications in Heat and Mass Transfer vol 39, pp. 987-994. 2012.

M. Darbandi, S.F. Hosseinizadeh, Numerical study of natural convection in vertical enclosures using a novel non-Boussinesq algorithm. Numerical Heat Transfer. Part A, 52, 849 – 873. 2007.

S.V. Patankar - Numerical heat transfer and fluid flow, Hemisphere Pub. Corp. 1981.

S. Singh, M.A.R. Sharif, Mixed convective cooling of a rectangular cavity with inlet and exit openings on differentially heated side walls. Numerical Heat Transfer Part A: Applications, 44, 233–253. 2003.

S. Ben Mabrouk, B. Khiari and H. Ben Ahmed., Simulation numérique de la dispersion des fumées dans une cellule partionnée. Journée Int Thermique JITH 03, 2003, pp : 125-132.

S. Ben Mabrouk, Etude numérique tridimensionnelle de la convection naturelle en cavité cubique. Thèse de Spécialité, Université de Poitiers LES /CNRS– France; 1984.

R. J. A. Janssen, R. A. W. M. Henkes – The first instability mechanism in differentially heated cavities with conducting horizontal walls. Trans. ASME J. Heat Transfer, 117, pp: 626 – 633, 1995.

R. G. Rehm and H. R. Baum – J. Res. Nat. Bur. Stand. , 83(3), pp: 297- 308, 1978.

M. F. El-Amin, S. Sun, H. Kanayama, Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient. Applied Mathematics and Computation, 217, 3764 – 3778. 2010.

S. Saravanan. C. Sivaraj, Natural convection in an enclosure with a localized nonuniform heat source on the bottom wall. International Journal of Heat and Mass Transfer, Vol 54, pp. 2820- 2828, 2011.

M. Tabarki, S. Ben Mabrouk, Numerical modeling of heat and mass transfer phenomena in heated enclosures. (2012) International Review of Mechanical Engineering (IREME), 6 (2), pp. 291 - 301.

R. A. W. M. Henkes, P. Le Quéré – Tree-dimensional transition of natural-convection flows. J. Fluid Mech. 319, pp. 281 – 303. 1996.

H.F. Oztop, K. Al-Salem, Y. Varol, I. Pop, Natural convection heat transfer in a partially opened cavity filled with porous media, International Journal of Heat and Mass Transfer,Vol. 54, pp: 2253–2261, 2011.

M. R. Ravi, R. A. W. M. Henkes, C. J. Hoogendoorn – On the high rayleigh number structure of steady laminar natural-convection flow in a square enclosure. J. Fluid Mech. 262, pp. 325 – 351. 1994.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2021 Praise Worthy Prize