Open Access Open Access  Restricted Access Subscription or Fee Access

Simulation, Model and Control of a Quadcopter AR Drone 2.0


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v10i3.8648

Abstract


Nowadays, aerial robotics and in general UAVs have been developed with a potential increase, due to their many applications in the area of security, tele informatics and military, among others. This paper presents the mathematical model, control and simulation in Matlab of a quadcopter, based on aerial robot AR Drone 2.0® from Parrot’s company. In the first part of the work, a brief introduction to the unmanned aerial robotics is done and a state of art for specific applications with the AR Drone is presented. Subsequently, the mathematical model of the vehicle is developed in order to obtain the kinematic characterization and to design a control algorithm that allows the manipulation of this device. Finally, the algorithms are tested on a simulation conducted in Matlab and the outstanding test results are presented as well as the conclusions of the work performed.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


AR. Drone; Aerial Robotic; Quadcopter; Mathematical Model; Cascade Control

Full Text:

PDF


References


V. Ortiz Padilla y P. Pulla Arévalo, Diseño y Construcción de un Cudricoptero a control remoto, Ecuador, 2012.

M. Saska, T. Krajnik, J. Faigl, V. Vonasek y L. Preucil, «Low cost MAV platform AR-drone in experimental verifications of methods for vision based autonomous navigation,» Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 4808,4809, 2012.
http://dx.doi.org/10.1109/iros.2012.6386277

J. Jun y Q. e. a. Juntong, «Control Platform Design and Experiment of A Quadrotor,» de Control Conference (CCC), 2013 32nd Chinese, Xi'an, 2013.

D. M. S. B. Matevž Bošnak, «Quadrocopter control using an on-board video system with off-board processing,» Robotics and Autonomous Systems, vol. 60, nº 4, pp. 657-667, 2012.
http://dx.doi.org/10.1016/j.robot.2011.10.009

T. Venugopalan, S. S. Nanyang Technol. Univ., T. Taher y G. Barbastathis, «Autonomous landing of an Unmanned Aerial Vehicle on an autonomous marine vehicle,» de Oceans, Hampton Roads, VA, 2012.
http://dx.doi.org/10.1109/oceans.2012.6404893

H. D. Yingcai Bi, «Implementation of autonomous visual tracking and landing for a low-cost quadrotor,» Optik - International Journal for Light and Electron Optics, vol. 124, nº 18, pp. 3296-3300, 2013.
http://dx.doi.org/10.1016/j.ijleo.2012.10.060

F. L. G. P. F. M. Andrea Sanna, «A Kinect-based natural interface for quadrotor control,» Entertainment Computing, vol. 4, nº 3, pp. 179-186, 2013.
http://dx.doi.org/10.1016/j.entcom.2013.01.001

S. Bouabdallah, «Design and Control of Quadrotors with Application to Autonomous Flying,» PhD Thesis, École Pòlythechnique Federale De Lausanne, 2007.

D. Shatat y T. A. Tutunji, «Modeling and Control of Quadrotor MAV Using Vision-based Measurement,» de Strategic Technology (IFOST), 2010 International Forum on, Ulsan, 2010.
http://dx.doi.org/10.1109/ifost.2010.5668079

D. Shatat y T. A. Tutunji , «UA V Quadrotor Implementation: A Case Study,» de Multi-Conference on Systems, Signals & Devices (SSD), 2014 11th International, Barcelona, 2014.
http://dx.doi.org/10.1109/ssd.2014.6808802

J. Pestana Puerta, J. Sánchez López, I. Mellado Bataller, C. Fu y P. Campoy Cervera, «AR Drone Identification and navigations control,» CVC-UPM, 2012.

A. Visioli, Practical PID control, London: Springer-Verlag, 2006.
http://dx.doi.org/10.1002/rnc.1369

H. L. Wade, Basic and Advanced Regulatory Control System Design and Application, United States of America: ISA, 2004.

P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Berlin: Springer-Verlag, 2011.

P. Pounds, «Design, Construction and Control of a Large Quadrotor micro air Vehicle,» PhD Thesis, Australian National University, 2008.

G. Szafranski y R. Czyba, «Different approaches of PID control UAV type quadrotor,» de Proceedings of the international Micro Air Vehicles Conference, 2011.

K. U. ]Lee, Y. H. Choi y J. B. Park, «Position Control of a Quadrotor: Dynamic Surface Control Approach,» de Annual Conference (SICE), Nagoya University, Nagoya, Japan, 2013.

Gumerova, M., Ismagilov, F., Khayrullin, I., Vavilov, V., Electrodynamic Brakes for Unmanned Aerial Vehicles, (2014) International Review of Aerospace Engineering (IREASE), 7 (6), pp. 202-206.
http://dx.doi.org/10.15866/irease.v7i6.4975

Bousson, K., Gameiro, T., A Quintic Spline Approach to 4D Trajectory Generation for Unmanned Aerial Vehicles, (2015) International Review of Aerospace Engineering (IREASE), 8 (1), pp. 1-9.
http://dx.doi.org/10.15866/irease.v8i1.4780

Fereidountabar, A., Cardarilli, G., Radio Link Design for Unmanned Aerial Vehicles (UAVs) with SQAM/TQAM Configuration and Alamouti/STBC Codes, (2015) International Journal on Communications Antenna and Propagation (IRECAP), 5 (4), pp. 241-247.
http://dx.doi.org/10.15866/irecap.v5i4.7059


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize