Open Access Open Access  Restricted Access Subscription or Fee Access

Review of the Fin Optimization in the Heat Sink Design


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v17i10.23824

Abstract


Heat sink optimization aims to improve hydrothermal characteristics, minimize weight, and reduce costs. This paper reviews some theoretical, numerical, and experimental studies dealing with the optimization design of fins and heat sinks of different shapes from 1958 to 2023. In the theoretical aspect, one-dimensional conduction heat transfer equations are derived to determine the optimum dimensions of rectangular, triangular, and spine fins, which involve circular, conical, concave, and convex fins. While the numerical studies dealt with heat sink optimization using design parameters such as fin dimensions, number of fins, fin arrangements, inclined angle, performing fins with different shapes, and flow rate ranges. Additionally, experimental studies were carried out in order to investigate optimizing heat sinks in a similar manner to numerical studies. Some of these studies suggested empirical correlations that could be used to compute Nu number and friction factors, assisting the designer in planning a preliminary heat sink design.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Optimum Fin Design; Heat Sink Design; Nini Channel Heat Sink; Perforated Fins; Least Weight; Minimum Cost

Full Text:

PDF


References


H. S. Lee, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. 2010.
https://doi.org/10.1002/9780470949979

A. D. Kraus, A. Aziz, and J. Welty, Extended Surface Heat Transfer. A Wiley-Interscience Publication JOHN WILEY & SONS, INC., 2001.
https://doi.org/10.1002/9780470172582

R. K. Shah and D. P. Sekuli, Fundamentals of Heat Exchanger Design. John Wiley & Sons, Inc., 2003.
https://doi.org/10.1002/9780470172605

Kays Willim M. and London A. L., Compact_Heat_Exchangers, Third Edition. 2011.

S. Lee, Optimum design and selection of heat sinks, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol. 18, no. 4, pp. 812-817, 1995.
https://doi.org/10.1109/95.477468

A. Elghool, F. Basrawi, T. K. Ibrahim, K. Habib, H. Ibrahim, and D. M. N. D. Idris, A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance, Energy Convers Manag, vol. 134, pp. 260-277, Feb. 2017.
https://doi.org/10.1016/j.enconman.2016.12.046

R. M. Kosanke, Optimum Design And Selection Of Heat Sinks, 2019.

A. D. Snider and A. D. Kraus, The quest for the optimum longitudinal fin profile, Heat Transfer Engineering, vol. 8, no. 2, 1987.
https://doi.org/10.1080/01457638708962790

A. D. Snider, Reply: The Quest for the Optimum Longitudinal Fin Profile, Heat Transfer Engineering, vol. 16, no. 3, 1995.
https://doi.org/10.1080/01457639508939856

J. J. Barker, The Efficiency of Composite Fins, Nuclear Science and Engineering, vol. 3, no. 3, 1958.
https://doi.org/10.13182/NSE58-A25469

A. Sonn and A. Bar-Cohen, Optimum cylindrical pin fin, Journal of Heat Transfer, vol. 103, no. 4. 1981.
https://doi.org/10.1115/1.3244547

A. Brown, Optimum dimensions of uniform annular fins, Int J Heat Mass Transf, vol. 8, no. 4, 1965.
https://doi.org/10.1016/0017-9310(65)90051-7

G. Ahmadi and A. Razani, Some optimization problems related to cooling fins, Int J Heat Mass Transf, vol. 16, no. 12, 1973.
https://doi.org/10.1016/0017-9310(73)90021-5

M. H. Cobble, Optimum fin shape, J Franklin Inst, vol. 291, no. 4, pp. 283-292, Apr. 1971.
https://doi.org/10.1016/0016-0032(71)90184-0

H. Eder, Dimensioning of fins with general nonlinear cooling laws, Wärme- und Stoffübertragung, vol. 6, no. 2, 1973.
https://doi.org/10.1007/BF01817973

I. Mikk, Convective fin of minimum mass, Int J Heat Mass Transf, vol. 23, no. 5, 1980.
https://doi.org/10.1016/0017-9310(80)90015-0

P. Razelos and K. Imre, Minimum mass convective fins with variable heat transfer coefficients, J Franklin Inst, vol. 315, no. 4, 1983.
https://doi.org/10.1016/0016-0032(83)90078-9

P. Razelos, The optimum dimensions of convective pin fins., TRANS. ASME J. HEAT TRANSFER, vol. 105, no. 2, May 1983. 1983.
https://doi.org/10.1115/1.3245597

A. Aziz, Optimum Dimensions of Extended Surfaces Operating in a Convective Environment, Appl Mech Rev, vol. 45, no. 5, 1992.
https://doi.org/10.1115/1.3119754

A. Bar-Cohen and M. Jelinek, Optimum arrays of longitudinal, rectangular fins in corrective heat transfer, Heat Transfer Engineering, vol. 6, no. 3, 1985.
https://doi.org/10.1080/01457638508939633

R. Roy and B. Kundu, Effects of fin shapes on heat transfer in microchannel heat sinks, Heat Transfer - Asian Research, vol. 47, no. 4, 2018.
https://doi.org/10.1002/htj.21332

J.M. Blanco, E. Armendáriz, and J. Esarte, A Parametric Study of Heat Transfer for the Optimization of Fin Sinks, Journal of Advanced Thermal Science Research, vol. 1, no. 1, 2014.
https://doi.org/10.15377/2409-5826.2014.01.01.1

C. Balachandar, S. Arunkumar, and M. Venkatesan, Numerical studies on natural convection heat transfer - Fins with closed top, in Applied Mechanics and Materials, 2014.
https://doi.org/10.4028/www.scientific.net/AMM.592-594.1682

D. Jang, S. J. Yook, and K. S. Lee, Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications, Appl Energy, vol. 116, 2014.
https://doi.org/10.1016/j.apenergy.2013.11.063

Y. Fan, P. S. Lee, L. W. Jin, B. W. Chua, and D. C. Zhang, A parametric investigation of heat transfer and friction characteristics in cylindrical oblique fin minichannel heat sink, Int J Heat Mass Transf, vol. 68, 2014.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.027

R. Rosli, K. A. Mohd Annuar, and F. S. Ismail, Optimal Pin Fin Heat sink Arrangement for Solving Thermal Distribution Problem, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences ISSN, vol. 11, no. 1, 2015.

A. Shadlaghani, M. R. Tavakoli, M. Farzaneh, and M. R. Salimpour, Optimization of triangular fins with/without longitudinal perforate for thermal performance enhancement, Journal of Mechanical Science and Technology, vol. 30, no. 4, 2016.
https://doi.org/10.1007/s12206-016-0349-5

A. Maji, D. Bhanja, and P. K. Patowari, Numerical investigation on heat transfer enhancement of heat sink using perforated pin fins with inline and staggered arrangement, Appl Therm Eng, vol. 125, 2017.
https://doi.org/10.1016/j.applthermaleng.2017.07.053

Y. Taamneh, M. Alrbai, and R. Sathyamurthy, Thermal optimization of tapered pin fin exposed to nonuniform surface heat transfer coefficient, Heat Transfer - Asian Research, vol. 47, no. 7, 2018.
https://doi.org/10.1002/htj.21354

K. Lampio and R. Karvinen, A new method to optimize natural convection heat sinks, Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 54, no. 8, 2018.
https://doi.org/10.1007/s00231-017-2106-4

C. E. G. Falcaõ and T. dos Santos, Optimization of Rectangular Fins With Prime Surface and Bottom Convection, J Therm Sci Eng Appl, vol. 11, no. 5, 2019.
https://doi.org/10.1115/1.4043466

Belhardj, S., Ahmed Bacha, S., Saidane, A., FINSTOOL: a New Universal Multi Boundary Conditions Tool for Steady and Unsteady Cases Fins Dimensioning, (2018) International Review of Mechanical Engineering (IREME), 12 (7), pp. 590-596.
https://doi.org/10.15866/ireme.v12i7.15038

Y. Liu, Y. Huang, M. Xu, S. Zhang, and P. Liu, Numerical study on novel double-layered heat sink with optimized pin fins, in 2019 20th International Conference on Electronic Packaging Technology, ICEPT 2019, 2019.
https://doi.org/10.1109/ICEPT47577.2019.245094

Sowayan, A., Hasani, S., Analysis of Conductive, Convective and Radiative Heat Transfer in Longitudinal Fins of Variable Profiles, (2019) International Review of Mechanical Engineering (IREME), 13 (9), pp. 523-532.
https://doi.org/10.15866/ireme.v13i9.17743

D. Kumar and B. Premachandran, Optimum arrangement of fins in a free convection-based solar air heater, Journal of Solar Energy Engineering, Transactions of the ASME, vol. 142, no. 2, 2020.
https://doi.org/10.1115/1.4045198

G. F. Xie, L. Zhao, Y. Y. Dong, Y. G. Li, S. L. Zhang, and C. Yang, Hydraulic and thermal performance of microchannel heat sink inserted with pin fins, Micromachines (Basel), vol. 12, no. 3, 2021.
https://doi.org/10.3390/mi12030245

C. L. Chapman, S. Lee, N. Hampshire, and B. L. Schmidt, Thermal Performance Of An Elliptical Pin Fin Heat Sink, in Tenth IEEE SEMI-THERM, 1994, pp. 24-31.

M. Reyes, J. R. Arias, A. Velazquez, and J. M. Vega, Experimental study of heat transfer and pressure drop in micro-channel based heat sinks with tip clearance, in Applied Thermal Engineering, 2011.
https://doi.org/10.1016/j.applthermaleng.2010.11.011

P. A. Deshmukh and R. M. Warkhedkar, Thermal performance of elliptical pin fin heat sink under combined natural and forced convection, Exp Therm Fluid Sci, vol. 50, 2013.
https://doi.org/10.1016/j.expthermflusci.2013.05.005

M. G. Mousa, Thermal performance of pin-fin heat sink subject in magnetic field inside rectangular channels, Exp Therm Fluid Sci, vol. 44, 2013.
https://doi.org/10.1016/j.expthermflusci.2012.06.006

H. M. Ali and W. Arshad, Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids, Energy Convers Manag, vol. 106, 2015.
https://doi.org/10.1016/j.enconman.2015.10.015

K. Yakut, F. Yesildal, A. Karabey, and R. Yakut, Thermal performance analysis of optimized hexagonal finned heat sinks in impinging Air Jet, in AIP Conference Proceedings, 2016.
https://doi.org/10.1063/1.4945940

W. Wan, D. Deng, Q. Huang, T. Zeng, and Y. Huang, Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks, Appl Therm Eng, vol. 114, 2017.
https://doi.org/10.1016/j.applthermaleng.2016.11.182

D. Yang, Y. Wang, G. Ding, Z. Jin, J. Zhao, and G. Wang, Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations, Appl Therm Eng, vol. 112, 2017.
https://doi.org/10.1016/j.applthermaleng.2016.08.211

S. Feng, M. Shi, H. Yan, S. Sun, F. Li, and T. J. Lu, Natural convection in a cross-fin heat sink, Appl Therm Eng, vol. 132, 2018.
https://doi.org/10.1016/j.applthermaleng.2017.12.049

J. J. Lee, H. J. Kim, and D. K. Kim, Experimental study on forced convection heat transfer from plate-fin heat sinks with partial heating, Processes, vol. 7, no. 10, 2019.
https://doi.org/10.3390/pr7100772

V. Choudhary, M. Kumar, and A. K. Patil, Experimental investigation of enhanced performance of pin fin heat sink with wings, Appl Therm Eng, vol. 155, 2019.
https://doi.org/10.1016/j.applthermaleng.2019.03.139

F. Alnaimat and M. Ziauddin, Experimental investigation of heat transfer in pin-fins heat sinks for cooling applications, Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 57, no. 1, 2021.
https://doi.org/10.1007/s00231-020-02947-1

Y. Yoon, D. R. Kim, and K. S. Lee, Cooling performance and space efficiency improvement based on heat sink arrangement for power conversion electronics, Appl Therm Eng, vol. 164, 2020.
https://doi.org/10.1016/j.applthermaleng.2019.114458

V. M. Hameed, M. A. Hussein, and H. T. Dhaiban, Investigating the effect of various fin geometries on the thermal performance of a heat sink under natural convection, Heat Transfer, vol. 49, no. 8, 2020.
https://doi.org/10.1002/htj.21866

M. K. U. Al-Karagoly, M. bagher Ayani, M. Mamourian, and S. Razavi Bazaz, Experimental parametric study of a deep groove within a pin fin arrays regarding fin thermal resistance, International Communications in Heat and Mass Transfer, vol. 115, 2020.
https://doi.org/10.1016/j.icheatmasstransfer.2020.104615

M. P. Vasilev, R. S. Abiev, and R. Kumar, Effect of circular pin-fins geometry and their arrangement on heat transfer performance for laminar flow in microchannel heat sink, International Journal of Thermal Sciences, vol. 170, p. 107177, Dec. 2021.
https://doi.org/10.1016/j.ijthermalsci.2021.107177

Ramakrishna, A., Rao, M., Rama Raju, A., Performance Analysis of Hybrid Microchannel Heat Sink for Non-Uniform Heat Fluxes Under Laminar Flow Conditions, (2022) International Review of Mechanical Engineering (IREME), 16 (10), pp. 540-547.
https://doi.org/10.15866/ireme.v16i10.23090

M. Abuşka and V. Çorumlu, A comparative experimental thermal performance analysis of conical pin fin heat sink with staggered and modified staggered layout under forced convection, Thermal Science and Engineering Progress, vol. 37, 2023.
https://doi.org/10.1016/j.tsep.2022.101560


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize