Open Access Open Access  Restricted Access Subscription or Fee Access

A Review of Piezoelectric Energy Harvesting from Linear and Non-Linear Vibrating Structures


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v17i9.23710

Abstract


Vibration energy harvesting using piezoelectric transduction has emerged as a promising approach for extracting energy from ambient mechanical oscillations. Nonetheless, linear energy harvesters exhibit a confined bandwidth and cannot proficiently capture energy from wide-spectrum or irregular vibrations. To address this limitation, nonlinear energy harvesters have been proposed. This review paper provides an overview of the mechanical design and vibration management aspects of both linear and nonlinear piezoelectric energy harvesters. It also discusses the advantages and shortcomings of both forms. A systematic methodology is applied in surveying the literature on piezoelectric vibration energy harvesting, selecting a set of relevant papers covering the period up until 2023. These papers are then classified dependent on the mechanical design and vibration management aspects of linear and nonlinear power harvesters. Key techniques are identified for harvesting energy from piezoelectric vibrations, including mechanical design methods such as springs, magnets, ropes, and other mechanisms, as well as vibration management techniques involving feedback control, tuned mass dampers, and other approaches. The paper concludes by offering a design viewpoint to enhance energy harvesting proficiency and presenting practical applications for both linear and nonlinear piezoelectric energy harvesting.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Piezoelectricity; Linear Assemblages; Non-Linear Configurations; Magnetic Association; Constricted Bandwidth; Aerial and Mechanical Vibrations; Impact-Plucking-Impact; Oscillations; Recurrence Bandwidth

Full Text:

PDF


References


N. Tyagi, A. M. Gaur, and A. N. Mahajan, Performance Evaluation of Novel Piezoelectric Cantilever Beam Structure for Energy Harvesting, Trends in Sciences, vol. 19, no. 22, p. 836, Nov. 2022.
https://doi.org/10.48048/tis.2022.836

W. Al-Ashtar and A.-R. Kareem, Model-Based Design of Piezoelectric Patches used to Repair Damaged Beams under Static Load, International Journal of Current Engineering and Technology, vol. 8, no. 01, Jan. 2018.
https://doi.org/10.14741/ijcet/v.8.1.23

A. S. Salman and M. A. Nima, Numerical Study of Fluid Flow and Heat Transfer Characteristics in Solid and Perforated Finned Heat Sinks Utilizing a Piezoelectric Fan, Journal of Engineering, vol. 25, no. 7, pp. 83-103, Jun. 2019.
https://doi.org/10.31026/j.eng.2019.07.05

M. Abdulazeem Ali and A. Abdul Hussein Ali, Intelligent Tuning Control of two Link Flexible Manipulator with Piezoelectric Actuator, Al-Khwarizmi Engineering Journal, vol. 18, no. 2, pp. 43-54, Jun. 2022.
https://doi.org/10.22153/kej.2022.06.001

Al-Ashtari, W. (2016) A Novel Analytical Model to Design Piezoelectric Patches Used to Repair Cracked Beams, Journal of Engineering, 22(6), pp. 117-136.
https://doi.org/10.31026/j.eng.2016.06.09

Jessy Baker, Shad Roundy and Paul Wright. Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks, AIAA 2005-5617. 3rd International Energy Conversion Engineering Conference. August 2005.
https://doi.org/10.2514/6.2005-5617

H. W. Kim et al., Energy harvesting using a piezoelectric 'cymbal' transducer in dynamic environment, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 43, no. 9 A, pp. 6178-6183, Sep. 2004.
https://doi.org/10.1143/JJAP.43.6178

W. Al-Ashtari, Enhancing the Performance of Piezoelectric Energy Harvesters Using Permanent Magnets, Journal of Engineering, vol. 21, no. 7, pp. 1-16, Jul. 2015.
https://doi.org/10.31026/j.eng.2015.07.01

S. A. AL-Samarraie, M. N. Hamzah, and I. A. Abdulsahib, Active Vibration Suppression of Smart Cantilever Beam with Sliding Mode Observer Using Two Piezoelectric Patches, Al-Khwarizmi Engineering Journal, vol. 13, no. 1, pp. 50-65, Mar. 2017.
https://doi.org/10.22153/kej.2017.08.005

W. Al-Ashtari, Performance Enhancement of a Piezoelectric Harvester Included into an Autonomous System, Journal of Engineering, vol. 21, no. 9, pp. 67-84, Sep. 2015.
https://doi.org/10.31026/j.eng.2015.09.05

Y. Yang, Q. Shen, J. Jin, Y. Wang, W. Qian, and D. Yuan, Rotational piezoelectric wind energy harvesting using impact-induced resonance, Appl Phys Lett, vol. 105, no. 5, Aug. 2014.
https://doi.org/10.1063/1.4887481

M. A. Halim and J. Y. Park, Piezoelectric energy harvester using impact-driven flexible side-walls for human-limb motion, Microsystem Technologies, vol. 24, no. 5, pp. 2099-2107, May 2018.
https://doi.org/10.1007/s00542-016-3268-6

Y. Tan, G. Lu, M. Cong, X. Wang, and L. Ren, Gathering energy from ultra-low-frequency human walking using a double-frequency up-conversion harvester in public squares, Energy Convers Manag, vol. 217, Aug. 2020.
https://doi.org/10.1016/j.enconman.2020.112958

Z. Yin, S. Gao, L. Jin, S. Guo, Q. Wu, and Z. Li, A shoe-mounted frequency up-converted piezoelectric energy harvester, Sens Actuators A Phys, vol. 318, Feb. 2021.
https://doi.org/10.1016/j.sna.2020.112530

X. Xue, Q. Sun, Q. Ma, and J. Wang, A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches, Sensors, vol. 22, no. 12, p. 4457, Jun. 2022.
https://doi.org/10.3390/s22124457

I. E. Piyarathna, A. M. Thabet, M. Ucgul, C. Lemckert, Y. Y. Lim, and Z. S. Tang, Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations, Sensors, vol. 23, no. 11, p. 5257, Jun. 2023-
https://doi.org/10.3390/s23115257

J. Wang, Z. Chen, Z. Li, J. Jiang, J. Liang, and X. Zeng, Piezoelectric Energy Harvesters: An Overview on Design Strategies and Topologies, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp. 3057-3063, Jul. 2022.
https://doi.org/10.1109/TCSII.2022.3173966

Z. Yang, S. Zhou, J. Zu, and D. Inman, High-Performance Piezoelectric Energy Harvesters and Their Applications, Joule, vol. 2, no. 4, pp. 642-697, Apr. 2018.
https://doi.org/10.1016/j.joule.2018.03.011

Adeyanju, A., Energy Generation from Footsteps Using Piezo-Electric Tiles, (2021) International Journal on Energy Conversion (IRECON), 9 (4), pp. 156-167.
https://doi.org/10.15866/irecon.v9i4.19956

Alrashdan, M., Quality and Damping Factors Optimization Using Taguchi Methods in Cantilever Beam Based Piezoelectric Micro-Power Generator for Cardiac Pacemaker Applications, (2020) International Review on Modelling and Simulations (IREMOS), 13 (2), pp. 74-84.
https://doi.org/10.15866/iremos.v13i2.18347

P. Poudel et al., Enhancing the Performance of Piezoelectric Wind Energy Harvester Using Curve‐Shaped Attachments on the Bluff Body, Global Challenges, p. 2100140, Oct. 2022.
https://doi.org/10.1002/gch2.202100140

T. Li and P. S. Lee, Piezoelectric Energy Harvesting Technology: From Materials, Structures, to Applications, Small Struct, vol. 3, no. 3, p. 2100128, Mar. 2022.
https://doi.org/10.1002/sstr.202100128

A. Naqvi, A. Ali, W. A. Altabey, and S. A. Kouritem, Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review, Energies (Basel), vol. 15, no. 19, p. 7424, Oct. 2022.
https://doi.org/10.3390/en15197424

T. J. Ntayeesh, Active Vibration Control Of Pipes Conveying Fluid Using Piezoelectric Actuators, Journal of Multidisciplinary Engineering Science and Technology (JMEST), ISSN: 3159-0040, Vol. 2 Issue 8, August - 2015.

W. Al-Ashtari, M. Hunstig, T. Hemsel, and W. Sextro, Increasing the power of piezoelectric energy harvesters by magnetic stiffening, in Journal of Intelligent Material Systems and Structures, Jul. 2013, pp. 1332-1342.
https://doi.org/10.1177/1045389X13483021

H. W. Kim et al., Energy Harvesting Using a Piezoelectric 'Cymbal' Transducer in Dynamic Environment, Jpn J Appl Phys, vol. 43, no. 9R, p. 6178, Sep. 2004.
https://doi.org/10.1143/JJAP.43.6178

N. Sezer and M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy, vol. 80, p. 105567, Feb. 2021.
https://doi.org/10.1016/j.nanoen.2020.105567

C. Covaci and A. Gontean, Piezoelectric Energy Harvesting Solutions: A Review, Sensors, vol. 20, no. 12, p. 3512, Jun. 2020.
https://doi.org/10.3390/s20123512

K. Chen, Q. Gao, S. Fang, D. Zou, Z. Yang, and W. H. Liao, An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth, Appl Energy, vol. 298, p. 117274, Sep. 2021.
https://doi.org/10.1016/j.apenergy.2021.117274

K. Zhou, H. L. Dai, A. Abdelkefi, and Q. Ni, Theoretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers, Int J Mech Sci, vol. 166, p. 105233, Jan. 2020.
https://doi.org/10.1016/j.ijmecsci.2019.105233

B. Zhang, H. Liu, S. Zhou, and J. Gao, A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components, Applied Mathematics and Mechanics (English Edition), vol. 43, no. 7, pp. 1001-1026, Jul. 2022.
https://doi.org/10.1007/s10483-022-2863-6

S.-T. Liu and W.-J. Su, Design and analysis of a stopper-engaged two-degrees-of-freedom nonlinear piezoelectric energy harvester, Engineering Research Express, vol. 1, no. 2, p. 025032, Nov. 2019.
https://doi.org/10.1088/2631-8695/ab5515

K. Fan, Q. Tan, Y. Zhang, S. Liu, M. Cai, and Y. Zhu, A monostable piezoelectric energy harvester for broadband low-level excitations, Appl Phys Lett, vol. 112, no. 12, p. 123901, Mar. 2018.
https://doi.org/10.1063/1.5022599

Zayed, Assal, Nakano, Kaizuka, and El-Bab, Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester, Sensors, vol. 19, no. 13, p. 2893, Jun. 2019.
https://doi.org/10.3390/s19132893

S. Fang, K. Chen, Z. Lai, S. Zhou, and W.-H. Liao, Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations, Appl Energy, vol. 331, p. 120355, Feb. 2023.
https://doi.org/10.1016/j.apenergy.2022.120355

G. Litak et al., Energy Harvesting Using a Nonlinear Resonator with Asymmetric Potential Wells, Energies (Basel), vol. 15, no. 24, p. 9469, Dec. 2022.
https://doi.org/10.3390/en15249469

J. Zhang and L. Qin, A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism, Appl Energy, vol. 240, pp. 26-34, Apr. 2019.
https://doi.org/10.1016/j.apenergy.2019.01.261

M. A. Halim and J. Y. Park, Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation, Sens Actuators A Phys, vol. 208, pp. 56-65, Feb. 2014.
https://doi.org/10.1016/j.sna.2013.12.033

L. Gu, Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation, Microelectronics J, vol. 42, no. 2, pp. 277-282, Feb. 2011.
https://doi.org/10.1016/j.mejo.2010.10.007

Q. Demouron, A. Morel, D. Gibus, A. Benhemou, and A. Badel, Performance Enhancement of Bistable Piezoelectric Energy Harvesters Using Non-Linear Energy Extraction Circuit, in 2022 21st International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), IEEE, Dec. 2022, pp. 58-61.
https://doi.org/10.1109/PowerMEMS56853.2022.10007580

M. Lallart, S. Zhou, Z. Yang, L. Yan, K. Li, and Y. Chen, Coupling mechanical and electrical nonlinearities: The effect of synchronized discharging on tristable energy harvesters, Appl Energy, vol. 266, p. 114516, May 2020.
https://doi.org/10.1016/j.apenergy.2020.114516

Q. He, Z. Xu, S. Sun, M. Zhou, Y. Wang, and H. Ji, A novel two-degree-of-freedom nonlinear piezoelectric energy harvester with a stopper for broadband low-frequency vibration, AIP Adv, vol. 13, no. 8, Aug. 2023.
https://doi.org/10.1063/5.0163888

K. Chen and W.-H. Liao, A nonlinear piezoelectric energy harvester with multiple auxetic unit cells, in Active and Passive Smart Structures and Integrated Systems XVII, S. Tol, M. A. Nouh, S. Shahab, J. Yang, and G. Huang, Eds., SPIE, Apr. 2023, p. 57.
https://doi.org/10.1117/12.2658624

F. Cottone, H. Vocca, and L. Gammaitoni, Nonlinear Energy Harvesting, Phys Rev Lett, vol. 102, no. 8, p. 080601, Feb. 2009.
https://doi.org/10.1103/PhysRevLett.102.080601

D. W. Wang, J. L. Mo, X. F. Wang, H. Ouyang, and Z. R. Zhou, Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration, Energy Convers Manag, vol. 171, pp. 1134-1149, Sep. 2018.
https://doi.org/10.1016/j.enconman.2018.06.052

G. Lee, D. Lee, J. Park, Y. Jang, M. Kim, and J. Rho, Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals, Commun Phys, vol. 5, no. 1, p. 94, Apr. 2022.
https://doi.org/10.1038/s42005-022-00869-4

T. Li and P. S. Lee, Piezoelectric Energy Harvesting Technology: From Materials, Structures, to Applications, Small Struct, vol. 3, no. 3, p. 2100128, Mar. 2022.
https://doi.org/10.1002/sstr.202100128

N. Sezer and M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy, vol. 80. Elsevier Ltd, Feb. 01, 2021.
https://doi.org/10.1016/j.nanoen.2020.105567


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize