Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Investigation of Solar Air Heater Using Pin Fin Absorber Plate with Pin Immersed in Paraffin Wax


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v17i9.23172

Abstract


Solar air heaters are extensively being used to heat air, but has low thermal efficiency because of poor heat transfer between the solar absorber plate and the air in transient through it, and also due to availability of solar radiation only during the day time and an increase in demand during the night. In the present study, the thermal performance of a solar air heater with pin fin absorber plate with pin immersed in paraffin wax as phase change material has been investigated experimentally. The proposed solar air heater has been designed, fabricated and tested under the weather conditions of Dhanbad, Jharkhand, India (latitude 23° 65’N and longitude 86° 47’E). The effects of varying the mass flow rate of air on the performance of the solar air heater have been further analysed. Experimental investigation shows that the average daily efficiency of the proposed solar air heater increases with an increase in the mass flow rate of air. Also, pin fin absorber plate with pin immersed in paraffin wax further enhances its performance with an increase in heat transfer rate from the absorber plate to Phase Change Material (PCM) bed during charging, and also from the PCM to the absorber plate during discharging, resulting an increase in the performance of the solar air heater.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Solar Air Heater; Absorber Plate; Pin Fin; Paraffin Wax; Mass Flow Rate of Air; Thermal Efficiency

Full Text:

PDF


References


W. A. Qureshi, N. K. C. Nair, M. M. Farid, Impact of energy storage in buildings on electricity demand side management, Energy Conversion and Management, Vol. 52, n.5, pp. 2110-2120, 2011.
https://doi.org/10.1016/j.enconman.2010.12.008

Y. Menni, A. Azzi, A. Chamkha, The solar air channels: comparative analysis, introduction of arc-shaped fins to improve the thermal transfer, Journal of Applied and Computational Mechanics, Vol. 5, n. 4, pp. 616-626, 2019.

Y. Menni, A. J. Chamkha, A. Azzi, Fluid flow and heat transfer over staggered ꞌ+ꞌ shaped obstacles, Journal of Applied and Computational Mechanics, Vol. 6, n. 4, pp. 741-756, 2020.

S. Haldorai, S. Gurusamy, M. Pradhapraj, A review on thermal energy storage systems in solar air heaters, International Journal of Energy Research, Vol. 43, n. 12, pp. 6061-6077, 2019.
https://doi.org/10.1002/er.4379

Indrajit, N. K. Bansal, H. P. Garg, An experimental study on a finned type and non-porous type solar air heater with a solar simulator, Energy conversion and management, Vol. 25, n. 2, pp. 135-138, 1985.
https://doi.org/10.1016/0196-8904(85)90023-8

H. M. Yeh, T. T. Lin, Efficiency improvement of flat-plate solar air heaters, Energy, Vol. 21, n. 6, pp. 435-443, 1996.
https://doi.org/10.1016/0360-5442(96)00008-4

A. E. Kabeel, K. Mečárik, Shape optimization for absorber plates of solar air collectors, Renewable Energy, Vol. 13, n. 1, pp. 121-131, 1998.
https://doi.org/10.1016/S0960-1481(97)00034-7

F. K. Forson, M. A. Nazha, H. Rajakaruna, Experimental and simulation studies on a single pass, double duct solar air heater, Energy conversion and Management, Vol. 44, n. 8, pp. 1209-1227, 2003.
https://doi.org/10.1016/S0196-8904(02)00139-5

C. D. Ho, C. W. Yeh, S. M. Hsieh, Improvement in device performance of multi-pass flat-plate solar air heaters with external recycle, Renewable Energy, Vol. 30, n. 10, pp. 1601-1621, 2005.
https://doi.org/10.1016/j.renene.2004.11.009

P. Naphon, On the performance and entropy generation of the double-pass solar air heater with longitudinal fins, Renewable Energy, Vol. 30, n. 9, pp. 1345-1357, 2005.
https://doi.org/10.1016/j.renene.2004.10.014

A. P. Omojaro, L. B. Y. Aldabbagh, Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber, Applied Energy, Vol. 87, n. 12, pp. 3759-3765, 2010.
https://doi.org/10.1016/j.apenergy.2010.06.020

D. Alta, E. Bilgili, C. Ertekin, O. Yaldiz, Experimental investigation of three different solar air heaters: Energy and exergy analyses, Applied Energy, Vol. 87, n. 10, pp. 2953-2973, 2010.
https://doi.org/10.1016/j.apenergy.2010.04.016

A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, B. M. Moharram, Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters, Energy, Vol. 36, n. 2, pp. 1076-1086.
https://doi.org/10.1016/j.energy.2010.11.042

A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, B. M. Moharram, Thermal performance investigation of double pass-finned plate solar air heater, Applied Energy, Vol. 88, n. 5, pp. 1727-1739, 2011.
https://doi.org/10.1016/j.apenergy.2010.11.017

A. Fudholi, K. Sopian, M. Y. Othman, M. H. Ruslan, B. Bakhtyar, Energy analysis and improvement potential of finned double-pass solar collector, Energy Conversion and Management, Vol. 75, pp. 234-240, 2011.
https://doi.org/10.1016/j.enconman.2013.06.021

A. Fudholi, K. Sopian, M. H. Ruslan, M. Y. Othman, Performance and cost benefits analysis of double-pass solar collector with and without fins, Energy conversion and management, Vol. 76, pp. 8-19, 2013.
https://doi.org/10.1016/j.enconman.2013.07.015

A. J. Mahmood, L. B. Y. Aldabbagh, F. Egelioglu, Investigation of single and double pass solar air heater with transverse fins and a package wire mesh layer, Energy Conversion and Management, Vol. 89, pp. 599-607, 2015.
https://doi.org/10.1016/j.enconman.2014.10.028

A. Sharma, G. Bharadwaj, Varun, Heat transfer and friction factor correlation development for double-pass solar air heater having V-shaped ribs as roughness elements, Experimental Heat Transfer, Vol. 30, n. 1, pp. 77-90, 2017.
https://doi.org/10.1080/08916152.2016.1161676

A. E. Kabeel, A. Khalil, S. M. Shalaby, M. E. Zayed, Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters, Journal of Solar Energy Engineering, Vol. 138, n. 5, p. 051004, 2016.
https://doi.org/10.1115/1.4034027

A. Priyam, P. Chand, Experimental investigations on thermal performance of solar air heater with wavy fin absorbers, Heat and Mass Transfer, Vol. 55, n. 9, pp. 2651-2666, 2019.
https://doi.org/10.1007/s00231-019-02605-1

M. Abuşka, Energy and exergy analysis of solar air heater having new design absorber plate with conical surface, Applied Thermal Engineering, Vol. 131, pp. 115-124, 2018.
https://doi.org/10.1016/j.applthermaleng.2017.11.129

P. T. Saravanakumar, D. Somasundaram, M. M. Matheswaran, Thermal and thermo-hydraulic analysis of arc shaped rib roughened solar air heater integrated with fins and baffles, Solar Energy, Vol. 180, pp. 360-371, 2019.
https://doi.org/10.1016/j.solener.2019.01.036

M. M. Farid, A. M. Khudhair, S. A. K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications, Energy Conversion and Management, Vol. 45, n. 9-10, pp. 1597-1615, 2004.
https://doi.org/10.1016/j.enconman.2003.09.015

Y. Li, N. Nord, Q. Xiao, T. Tereshchenko, Building heating applications with phase change material: A comprehensive review, Journal of Energy Storage, Vol. 31, p. 101634, 2020.
https://doi.org/10.1016/j.est.2020.101634

S. Haldorai, S. Gurusamy, M. Pradhapraj, A review on thermal energy storage systems in solar air heaters, International Journal of Energy Research, Vol. 43, n. 12, pp. 6061-6077, 2019.
https://doi.org/10.1002/er.4379

V. V. Tyagi, N. L. Panwar, N. A. Rahim, R. Kothari, Review on solar air heating system with and without thermal energy storage system, Renewable and Sustainable Energy Reviews, Vol. 16, n. 4, pp. 2289-2303, 2012.
https://doi.org/10.1016/j.rser.2011.12.005

A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, Vol. 13, n. 2, pp. 318-345, 2009.
https://doi.org/10.1016/j.rser.2007.10.005

H. E. Fath, Thermal performance of a simple design solar air heater with built-in thermal energy storage system, Renewable energy, Vol. 6, n. 8, pp. 1033-1039, 1995.
https://doi.org/10.1016/0960-1481(94)00085-6

S. O. Enibe, Performance of a natural circulation solar air heating system with phase change material energy storage, Renewable Energy, Vol. 27, n. 1, pp. 69-86, 2002.
https://doi.org/10.1016/S0960-1481(01)00173-2

E. B. S. Mettawee, G. M. Assassa, Experimental study of a compact PCM solar collector, Energy, Vol. 31, n. 14, pp. 2958-2968, 2006.
https://doi.org/10.1016/j.energy.2005.11.019

S. M. Shalaby, M. A. Bek, Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium, Energy Conversion and Management, Vol. 83, pp. 1-8, 2014.
https://doi.org/10.1016/j.enconman.2014.03.043

M. M. Alkilani, K. Sopian, S. Mat, M. A. Alghoul, Output air temperature prediction in a solar air heater integrated with phase change material, European Journal of Scientific Research, Vol. 27, n. 3, pp. 334-341, 2009.

A. E. Kabeel, A. Khalil, S. M. Shalaby, M. E. Zayed, Improvement of thermal performance of the finned plate solar air heater by using latent heat thermal storage, Applied Thermal Engineering, Vol. 123, pp. 546-553, 2017.
https://doi.org/10.1016/j.applthermaleng.2017.05.126

A. E. Kabeel, A. Khalil, S. M. Shalaby, M. E. Zayed, Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage, Energy Conversion and Management, Vol. 113, pp. 264-272, 2016.
https://doi.org/10.1016/j.enconman.2016.01.068

M. Sajawal, T. U. Rehman, H. M. Ali, U. Sajjad, A. Raza, M. S. Bhatti, Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater, Case Studies in Thermal Engineering, Vol. 15, p. 100543, 2019.
https://doi.org/10.1016/j.csite.2019.100543

S. M. Shalaby, A. E. Kabeel, E. El-Bialy, M. K. Elfakharany, Investigation and improvement of thermal performance of a solar air heater using extended surfaces through the phase change material, Journal of Solar Energy Engineering, Vol. 142, n. 1, p. 011012, 2020.
https://doi.org/10.1115/1.4044565

Q. A. Jawad, A. M. Mahdy, A. H. Khuder, M. T. Chaichan, Improve the performance of a solar air heater by adding aluminum chip, paraffin wax, and nano-SiC, Case Studies in Thermal Engineering, Vol. 19, p. 100622, 2020.
https://doi.org/10.1016/j.csite.2020.100622

Arunkumar, H., Karanth, K., Sharma, N., Madhwesh, N., Numerical Analysis on a Solar Air Heater Provided with Saw Tooth Shaped Turbulators for Augmented Thermal Performance, (2021) International Review of Mechanical Engineering (IREME), 15 (3), pp. 141-148.
https://doi.org/10.15866/ireme.v15i3.19900

Arunkumar, H., Karanth, K., Sharma, N., Madhwesh, N., CFD Analysis on Rectangular Shaped Variable Height Turbulators Fitted in a Solar Air Heater for Improved Thermal Performance, (2021) International Review on Modelling and Simulations (IREMOS), 14 (3), pp. 204-212.
https://doi.org/10.15866/iremos.v14i3.19939

R. Kumar, A. Sharma, V. Goel, R. Sharma, M. Sethi, V. V. Tyagi, An experimental investigation of new roughness patterns (dimples with alternative protrusions) for the performance enhancement of solar air heater, Renewable Energy, Vol. 211, pp. 964-974, 2023.
https://doi.org/10.1016/j.renene.2023.04.111

N. Arya, V. Goel, B. Sunden, Solar air heater performance enhancement with differently shaped miniature combined with dimple shaped roughness: CFD and experimental analysis, Solar Energy, Vol. 250, pp. 33-50, 2023.
https://doi.org/10.1016/j.solener.2022.12.024

V. Kumar, R. Murmu, Performance based investigation of inclined spherical ball roughened solar air heater, Applied Thermal Engineering, Vol. 224, p. 120033, 2023.
https://doi.org/10.1016/j.applthermaleng.2023.120033

Karmveer, N. K. Gupta, T. Alam, R. Cozzolino, G. Bella, A descriptive review to access the most suitable rib's configuration of roughness for the maximum performance of solar air heater, Energies, Vol. 15, n. 8, p. 2800, 2022.
https://doi.org/10.3390/en15082800

S. Chaurasia, V. Goel, A. Debbarma, Impact of hybrid roughness geometry on heat transfer augmentation in solar air heater: A review, Solar Energy, Vol. 255, pp. 435-459, 2023.
https://doi.org/10.1016/j.solener.2023.02.052

I. Kurtbas, A. Durmuş, Efficiency and exergy analysis of a new solar air heater, Renewable Energy, Vol. 29, n. 9, pp. 1489-1501, 2004.
https://doi.org/10.1016/j.renene.2004.01.006

S. Bouadila, M. Lazaar, S. Skouri, S. Kooli, A. Farhat, Energy and exergy analysis of a new solar air heater with latent storage energy, International Journal of Hydrogen Energy, Vol. 39, n. 27, pp. 15266-15274, 2014.
https://doi.org/10.1016/j.ijhydene.2014.04.074

G. Tsatsaronis, Definitions and nomenclature in exergy analysis and exergoeconomics, Energy, Vol. 32, n. 4, pp. 249-253, 2007.
https://doi.org/10.1016/j.energy.2006.07.002

A. Suzuki, A fundamental equation for exergy balance on solar collectors, Journal of Solar Energy Engineering, Vol. 110, no. 2, pp. 102-106, 1988.
https://doi.org/10.1115/1.3268238

ASHRAE, ASHRAE STANDARD, Methods of testing to determine thermal performance of solar collectors, ASHRAE 1977; 345, New York.

www.accuweather.com/en/in/dhanbad/188659/satellite/188659

S. J. Kline, F. A. McClintock, Describing Uncertainties in Single Sample Experiments, Mechanical Engineering, Vol. 75, pp. 3-8, 1953.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize