Open Access Open Access  Restricted Access Subscription or Fee Access

A Review on Recent Advancement in Solar Photovoltaic System


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i12.23046

Abstract


The power area has been dealing with the issues of the nonstop expansion sought after an absence of adequate age of electric energy utilizing petroleum derivatives. The ecological issues like contamination and a worldwide temperature alteration, the ceaselessly inflating cost of petroleum derivatives and the lack of petroleum products are mostly worried to collect energy from reasonable and clean sources. One of the abundant sources of energy is the solar energy. Using PV technologies, electrical energy can be produced. Aside from low productivity, different elements, particularly ecological factors, for example, dust, hail, stickiness and temperature and establishment components, for example, slant point, establishment site, and height impact the exhibition of the PV module. In this review paper, the innovations in the photo-voltaic technologies, the power producing capacity, various radiation absorbing materials used, along with its application. Various existing models, grid patterns, and its possible future explorable areas are additionally studied.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Solar Energy; Photo-Voltaic System; Performance; Efficiency; Renewable Energy; Solar Collectors

Full Text:

PDF


References


M. Mathew, and J. Hossain, Analysis of a grid connected solar photovoltaic system with different PV technologies, Proc. of 2017 IEEE International Conference on Circuits and Systems ICCS, Thiruvananthapuram, 2017, pp. 264-269.
https://doi.org/10.1109/ICCS1.2017.8326002

K. Dubey, and M.T. Shah, Design and simulation of Solar PV system, International Conference on Automatic Control and Dynamic Optimization Techniques ICACDOT, Pune, 2016, pp. 568-573.
https://doi.org/10.1109/ICACDOT.2016.7877649

R. E. Clarke, S. Giddey, F. T. Ciacchi, S.P.S. Badwal, B. Paul, and J. Andrews, Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy, Vol. 34, n. 6, pp.2531-2542, 2009.
https://doi.org/10.1016/j.ijhydene.2009.01.053

V. Baharwani, N. Meena, A. Dubey, U. Brighu, and J. Mathur, Life cycle analysis of solar PV system: A review. International Journal of Environmental Research and Development, Vol. 4, n. 2, pp.183-190, 2014.

S.S. Kumary, V.A.A.M.T.Oo, G.M. Shafiullah, and A, Stojcevski, Modelling and power quality analysis of a grid-connected solar PV system. Australasian Universities Power Engineering Conference, Perth, pp.1-6, 2014.
https://doi.org/10.1109/AUPEC.2014.6966605

Prakash, S., Dhal, P., A Review: Solar Tracking System with Grid Used in Kurnool Ultra Mega Solar Park, (2019) International Review of Electrical Engineering (IREE), 14 (3), pp. 195-204.
https://doi.org/10.15866/iree.v14i3.17162

Memon, M., Bhutto, G., Integration of Solar Based Energy Sources in Pakistan - A Review, (2020) International Journal on Energy Conversion (IRECON), 8 (5), pp. 162-170.
https://doi.org/10.15866/irecon.v8i5.19490

Y. Sukamongkol, S. Chungpaibulpatana, and W. Ongsakul, A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads, Renewable Energy, Vol. 27. n. 2, pp.237-258, 2002.
https://doi.org/10.1016/S0960-1481(02)00002-2

P. Mohanty, T. Muneer, E.J. Gago, E.J. and Y. Kotak, Solar radiation fundamentals and PV system components, In Solar Photovoltaic System Applications, (New Yark: Springer Chem, 2016, 7-47).
https://doi.org/10.1007/978-3-319-14663-8_2

L.T. Wong, and W.K. Chow, Solar radiation model, Applied energy, Vol. 69, n. 3, pp.191-224, 2001.
https://doi.org/10.1016/S0306-2619(01)00012-5

A. Awasthi, A.K. Shukla, M.M. SR, C. Dondariya, K. N. Shukla, D. Porwal, D. and G. Richhariya, Review on sun tracking technology in solar PV system, Energy Reports, Vol. 6, pp.392-405, 2020.
https://doi.org/10.1016/j.egyr.2020.02.004

S.R. Madeti and S.N. Singh, A comprehensive study on different types of faults and detection techniques for solar photovoltaic system, Solar Energy, Vol. 158, pp.161-185, 2017.
https://doi.org/10.1016/j.solener.2017.08.069

V. Gupta, M. Sharma, R.K. Pachauri, and K.D. Babu, 2019. Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques, Solar Energy, Vol. 191, pp.596-622, 2019.
https://doi.org/10.1016/j.solener.2019.08.079

A. Srinivasan, S. Devakirubakaran, and B.M. Sundaram, 2020. Mitigation of mismatch losses in solar PV system-Two-step reconfiguration approach, Solar Energy, Vol. 206, pp.640-654, 2020.
https://doi.org/10.1016/j.solener.2020.06.004

W. Batayneh, A. Owais, and M. Nairoukh, An intelligent fuzzy based tracking controller for a dual-axis solar PV system. Automation in Construction, Vol. 29, pp.100-106, 2013.
https://doi.org/10.1016/j.autcon.2012.09.006

K. Ryu, J.G. Rhee, K.M. Park, and J. Kim, Concept and design of modular Fresnel lenses for concentration solar PV system, Solar energy, Vol. 80, n. 12, pp.1580-1587, 2006.
https://doi.org/10.1016/j.solener.2005.12.006

N. M. Kumar, M.P. Subathra, and J.E. Moses, On-grid solar photovoltaic system: components, design considerations, and case study, Proc. 4th International Conference on Electrical Energy Systems, Chennai, 2018, pp. 616-619.
https://doi.org/10.1109/ICEES.2018.8442403

R. AbdelHady, Modeling and simulation of a micro grid-connected solar PV system, Water Science, Vol. 1, n. 1, pp.1-10, 2017.
https://doi.org/10.1016/j.wsj.2017.04.001

J. Atiq, and P.K. Soori, Modelling of a grid connected solar PV system using MATLAB/Simulink. International journal of simulation: systems, science and technology, Vol. 17, n. 41, 2017.
https://doi.org/10.5013/IJSSST.a.17.41.45

K. Dubey, and M.T. Shah, Design and simulation of Solar PV system, Proc. International Conference on Automatic Control and Dynamic Optimization Techniques, Pune, 2016, pp. 568-573.
https://doi.org/10.1109/ICACDOT.2016.7877649

A. K. Shukla, K. Sudhakar, K. and P. Baredar, Design, simulation and economic analysis of standalone roof top solar PV system in India, Solar Energy, Vol. 136, pp. 437-449, 2016.
https://doi.org/10.1016/j.solener.2016.07.009

M. Mani, and R. Pillai, Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations, Renewable and sustainable energy reviews, Vol. 14, n. 9, pp.3124-3131, 2010.
https://doi.org/10.1016/j.rser.2010.07.065

R. Ramaprabha, and B.L. Mathur, Intelligent controller based maximum power point tracking for solar PV system. International Journal of Computer Applications, Vol. 12, n. 10, pp.37-41, 2011.
https://doi.org/10.5120/1717-2303

A.K. Behura, A. Kumar, D.K. Rajak, C.I. Pruncu, and L. Lamberti, Towards better performances for a novel rooftop solar PV system, Solar Energy, Vol. 216, pp.518-529, 2021.
https://doi.org/10.1016/j.solener.2021.01.045

P. Shah, and B. Singh, Adaptive observer based control for rooftop solar PV system. IEEE Transactions on Power Electronics, Vol. 35, n. 9, pp.9402-9415, 2019.
https://doi.org/10.1109/TPEL.2019.2898038

Palacios, A., Amaya, D., Ramos, O., Solar Tracking Control of a Parabolic Trough Collector by Traditional PID, Fuzzy Sets and Particle Swarm Optimization Algorithm, (2021) International Review of Automatic Control (IREACO), 14 (3), pp. 124-134.
https://doi.org/10.15866/ireaco.v14i3.19267

Awad, A., Experimental Study on Productivity of Different Designs of Solar Stills in Hot Climatic Conditions, (2019) International Review of Mechanical Engineering (IREME), 13 (9), pp. 542-549.
https://doi.org/10.15866/ireme.v13i9.18006

Y. Sukamongkol, S. Chungpaibulpatana, and W. Ongsakul, A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads. Renewable Energy, Vol. 27, n. 2, pp.237-258, 2002.
https://doi.org/10.1016/S0960-1481(02)00002-2

L. Gao, R.A. Dougal, S. Liu, and A.P. Iotova, Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions, IEEE Transactions on Industrial Electronics, Vol. 56, n. 5, pp.1548-1556, 2009.
https://doi.org/10.1109/TIE.2008.2011296

W. Charfi, M. Chaabane, H. Mhiri, and P. Bournot, Performance evaluation of a solar photovoltaic system, Energy Reports, Vol. 4, pp.400-406, 2018.
https://doi.org/10.1016/j.egyr.2018.06.004

S. Sugumar, D.P. Winston, and M. Pravin, A novel on-time partial shading detection technique for electrical reconfiguration in solar PV system, Solar Energy, Vol. 225, pp.1009-1025, 2021.
https://doi.org/10.1016/j.solener.2021.07.069

A. Gupta, Y.K. Chauhan, and R.K. Pachauri, A comparative investigation of maximum power point tracking methods for solar PV system, Solar Energy, Vol. 136, pp.236-253, 2016.
https://doi.org/10.1016/j.solener.2016.07.001

M. LokeshReddy, P.P. Kumar, S.A.M. Chandra, T.S. Babu, and N. Rajasekar, Comparative study on charge controller techniques for solar PV system, Energy Procedia, 117, pp.1070-1077, 2017.
https://doi.org/10.1016/j.egypro.2017.05.230

M. Abdulkadir, A. S. Samosir, and A.H.M. Yatim, Modeling and simulation of a solar photovoltaic system, its dynamics and transient characteristics in LABVIEW, International Journal of Power Electronics and Drive Systems, Vol. 3, n. 2, pp.185-192, 2013.
https://doi.org/10.11591/ijpeds.v3i2.2422

A. Banik, A. Shrivastava, R.M. Potdar, S.K. Jain, S.G. Nagpure, and M. Soni, Design, modelling, and analysis of novel solar PV system using MATLAB, Materials today: proceedings, Vol. 51, pp.756-763, 2022.
https://doi.org/10.1016/j.matpr.2021.06.226

M.F. Ezzat, and I. Dincer, Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle, Energy Conversion and Management, Vol. 129, pp.284-292, 2016.
https://doi.org/10.1016/j.enconman.2016.10.025

I. Kougias, K. Bódis, A. Jäger-Waldau, F. Monforti-Ferrario, and S. Szabó, Exploiting existing dams for solar PV system installations, Progress in Photovoltaics: Research and Applications, Vol. 24, n. 2, pp.229-239, 2016.
https://doi.org/10.1002/pip.2640

M. Bouzguenda, T. Salmi, A. Gastli, and A. Masmoudi, Evaluating solar photovoltaic system performance using MATLAB, In 2012 First International Conference on Renewable Energies and Vehicular Technology, Nabeul, 2012, pp. 55-59.
https://doi.org/10.1109/REVET.2012.6195248

M. Kolhe, S. Kolhe, and J.C. Joshi, Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India, Energy Economics, Vol. 24, n. 2, pp.155-165, 2002.
https://doi.org/10.1016/S0140-9883(01)00095-0

V. Baharwani, N. Meena, A. Dubey, U. Brighu, and J. Mathur, Life cycle analysis of solar PV system: A review, International Journal of Environmental Research and Development, Vol. 4, n. 2, pp.183-190, 2014.

N.D. Kaushika, N.K. Gautam, and K. Kaushik, Simulation model for sizing of stand-alone solar PV system with interconnected array, Solar Energy Materials and Solar Cells, Vol. 85, n. 4, pp.499-519, 2005.
https://doi.org/10.1016/j.solmat.2004.05.024

M. Kolhe, Techno-economic optimum sizing of a stand-alone solar photovoltaic system, IEEE Transactions on Energy Conversion, Vol. 24, n. 2, pp.511-519, 2009.
https://doi.org/10.1109/TEC.2008.2001455

T. Ma, H. Yang, and L. Lu, Solar photovoltaic system modeling and performance prediction, Renewable and Sustainable Energy Reviews, Vol. 36, pp.304-315, 2014.
https://doi.org/10.1016/j.rser.2014.04.057

R.M. Moharil, and P.S. Kulkarni, Reliability analysis of solar photovoltaic system using hourly mean solar radiation data, Solar Energy, 84(4), pp.691-702, 2010.
https://doi.org/10.1016/j.solener.2010.01.022

P. Sharma, H. Bojja, and P. Yemula, Techno-economic analysis of off-grid rooftop solar PV system, IEEE 6th international conference on power systems, Delhi, 2016, pp. 1-5.
https://doi.org/10.1109/ICPES.2016.7584208

A.D. Sahin, I. Dincer, and M.A. Rosen, Thermodynamic analysis of solar photovoltaic cell systems. Solar energy materials and solar cells, 91(2-3), pp.153-159, 2007.
https://doi.org/10.1016/j.solmat.2006.07.015

R.E. Clarke, S. Giddey, F.T. Ciacchi, S.P.S. Badwal, B. Paul, and J. Andrews, Direct coupling of an electrolyser to a solar PV system for generating hydrogen, International journal of hydrogen energy, Vol. 34, n. 6, pp.2531-2542, 2009.
https://doi.org/10.1016/j.ijhydene.2009.01.053

Anbuchezhian, N., Srinivasan, S., Velmurugan, T., Suganya Priyadharshini, G., Krishnamoorthy, R., Comparative Study of Neural Network and Tree-Based Models in Solar Irradiance Prediction, (2021) International Review of Mechanical Engineering (IREME), 15 (6), pp. 307-316.
https://doi.org/10.15866/ireme.v15i6.21170

Bou-Rabee, M., Bilal, M., Bashir, M., Ali, A., Forecasting the Solar Panels Power Output Based on Air Pollution and Weather in the Gulf Countries by Using Machine Learning, (2022) International Review of Electrical Engineering (IREE), 17 (6), pp. 570-577.
https://doi.org/10.15866/iree.v17i6.22714

Arunkumar, H., Karanth, K., Sharma, N., Madhwesh, N., CFD Analysis on Rectangular Shaped Variable Height Turbulators Fitted in a Solar Air Heater for Improved Thermal Performance, (2021) International Review on Modelling and Simulations (IREMOS), 14 (3), pp. 204-212.
https://doi.org/10.15866/iremos.v14i3.19939

M.R. Said, A.A. El-Samahy, and H.M. El Zoghby, Cleaning frequency of the solar PV power plant for maximum energy harvesting and financial profit, International Journal of Power Electronics and Drive Systems, Vol. 14, n. 1, p.546-554, 2023.
https://doi.org/10.11591/ijpeds.v14.i1.pp546-554

P. Mandal, S.T.S. Madhira, J. Meng, and R.L. Pineda, Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques, Procedia Computer Science, Vol. 12, pp. 332-337, 2012.
https://doi.org/10.1016/j.procs.2012.09.080

B.J. Huang, Y.C. Huang, G.Y. Chen, P.C. Hsu, and K. Li, Improving solar PV system efficiency using one-axis 3-position sun tracking, Energy Procedia, Vol. 33, pp.280-287, 2013.
https://doi.org/10.1016/j.egypro.2013.05.069

M. E. A. Lopez, F. J. G Mantiñan, and M. G. Molina, Implementation of wireless remote monitoring and control of solar photovoltaic (PV) system, Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition, Montevideo, 2012, pp. 1-6.

H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, Effect of dust on the transparent cover of solar collectors, Energy conversion and management, 47(18-19), pp.3192-3203, 2006.
https://doi.org/10.1016/j.enconman.2006.02.014

S. Devassy, and B. Singh, Implementation of solar photovoltaic system with universal active filtering capability, IEEE Transactions on Industry Applications, Vol. 55, n. 4, pp.3926-3934, 2019.
https://doi.org/10.1109/TIA.2019.2906297

S. Anand, S.K. Gundlapalli, and B.G. Fernandes, Transformer-less grid feeding current source inverter for solar photovoltaic system, IEEE Transactions on Industrial Electronics, Vol. 61, n. 10, pp.5334-5344, 2014.
https://doi.org/10.1109/TIE.2014.2300038

W.S. Ho, M.Z.W.M. Tohid, H. Hashim, and Z.A. Muis, Electric system cascade analysis (ESCA): solar PV system, International Journal of Electrical Power & Energy Systems, Vol. 54, pp.481-486, 2014.
https://doi.org/10.1016/j.ijepes.2013.07.007

W.S. Ho, H. Hashim, M.H. Hassim, Z.A. Muis, and N.L.M. Shamsuddin, Design of distributed energy system through Electric System Cascade Analysis (ESCA), Applied Energy, Vol 99, pp.309-315, 2012.
https://doi.org/10.1016/j.apenergy.2012.04.016

J. Siecker, K. Kusakana, and E.B. Numbi, A review of solar photovoltaic systems cooling technologies, Renewable and Sustainable Energy Reviews, 79, pp.192-203, 2017.
https://doi.org/10.1016/j.rser.2017.05.053

H. Jiang, L. Lu, and K. Sun, Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules, Atmospheric Environment, Vol. 45, n. 25, pp.4299-4304, 2011.
https://doi.org/10.1016/j.atmosenv.2011.04.084

S.S. Mohammed, D. Devaraj, and T.I. Ahamed, A novel hybrid maximum power point tracking technique using perturb & observe algorithm and learning automata for solar PV system, Energy, Vol. 112, pp.1096-1106, 2016.
https://doi.org/10.1016/j.energy.2016.07.024

A.Y. Al-Hasan, A new correlation for direct beam solar radiation received by photovoltaic panel with sand dust accumulated on its surface, Solar Energy, Vol. 63, n. 5, pp.323-333,1998.
https://doi.org/10.1016/S0038-092X(98)00060-7

N. H. Zaini, M. Ab-Kadir, M. Izadi, N. I. Ahmad, M. Radzi, N. Azis, and W. Z. Wan Hasan, On the effect of lightning on a solar photovoltaic system, 33rd International Conference on Lightning Protection, Portugal, 2016, pp. 1-4.
https://doi.org/10.1109/ICLP.2016.7791421

H. Patel, M. Gupta, and A. K. Bohre, Mathematical modeling and performance analysis of MPPT based solar PV system, International Conference on Electrical Power and Energy Systems, Bhopal, 2016, pp. 157-162.
https://doi.org/10.1109/ICEPES.2016.7915923

S.B. Mohod, V.R. Parihar, and S. D. Nimkar, Hybrid power system with integration of wind, battery and solar PV system, IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, Chennai, 2017, pp. 2332-2337.
https://doi.org/10.1109/ICPCSI.2017.8392134

N. Saxena, B. Singh, and A. L. Vyas, Single-phase solar PV system with battery and exchange of power in grid-connected and standalone modes, IET Renewable Power Generation, Vol. 11, n. 2, pp.325-333, 2017.
https://doi.org/10.1049/iet-rpg.2016.0143

B.J. Huang, T.H. Lin, W.C. Hung, and F.S. Sun, Performance evaluation of solar photovoltaic/thermal systems, Solar Energy, Vol. 70, n. 5, pp.443-448, 2001.
https://doi.org/10.1016/S0038-092X(00)00153-5

J.K. Kaldellis, and P. Fragos, Ash deposition impact on the energy performance of photovoltaic generators, Journal of cleaner production, Vol. 19, n. 4, pp.311-317, 2011.
https://doi.org/10.1016/j.jclepro.2010.11.008

J.K. Kaldellis, P. Fragos, and M. Kapsali, Systematic experimental study of the pollution deposition impact on the energy yield of photovoltaic installations. Renewable energy, Vol. 36, n. 10, pp.2717-2724, 2011.
https://doi.org/10.1016/j.renene.2011.03.004

M.M. Rahman, M. Hasanuzzaman, and N.A. Rahim, Effects of various parameters on PV-module power and efficiency, Energy Conversion and Management, 103, pp.348-358, 2015.
https://doi.org/10.1016/j.enconman.2015.06.067

A.A. Hegazy, Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors, Renewable energy, Vol. 22, n. 4, pp. 525-540, 2001.
https://doi.org/10.1016/S0960-1481(00)00093-8

J. Tanesab, D. Parlevliet, J. Whale, T. Urmee, and T. Pryor, The contribution of dust to performance degradation of PV modules in a temperate climate zone, Solar Energy, Vol. 120, pp.147-157, 2015.
https://doi.org/10.1016/j.solener.2015.06.052

B.R. Paudyal, and S.R. Shakya, Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu, Solar Energy, Vol. 135, pp.103-110, 2016.
https://doi.org/10.1016/j.solener.2016.05.046

Rerhrhaye, F., Lahlouh, I., Ennaciri, Y., Benzazah, C., Akkary, A., Sefiani, N., New Solar MPPT Control Technique Based on Incremental Conductance and Multi-Objective Genetic Algorithm Optimization, (2022) International Journal on Energy Conversion (IRECON), 10 (3), pp. 70-78.
https://doi.org/10.15866/irecon.v10i3.22156

H. Lu, L. Lu, and Y. Wang, Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building, Applied Energy, Vol. 180, pp.27-36, 2016.
https://doi.org/10.1016/j.apenergy.2016.07.030

J.J. John, S. Warade, G. Tamizhmani, and A. Kottantharayil, Study of soiling loss on photovoltaic modules with artificially deposited dust of different gravimetric densities and compositions collected from different locations in India, IEEE journal of photovoltaics, Vol. 6, n. 1, pp.236-243, 2015.
https://doi.org/10.1109/JPHOTOV.2015.2495208

M. A. Ramli, E. Prasetyono, R. W. Wicaksana, N. A. Windarko, K. Sedraoui, and Y.A. Al-Turki, On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions, Renewable Energy, Vol. 99, pp.836-844, 2016.
https://doi.org/10.1016/j.renene.2016.07.063

S. Pulipaka, and R. Kumar, Power prediction of soiled PV module with neural networks using hybrid data clustering and division techniques, Solar Energy, Vol. 133, pp.485-500, 2016.
https://doi.org/10.1016/j.solener.2016.04.004

S. Pulipaka, F. Mani, and R. Kumar, Modeling of soiled PV module with neural networks and regression using particle size composition, Solar Energy, Vol. 123, pp.116-126, 2016.
https://doi.org/10.1016/j.solener.2015.11.012

Y. Jiang, L. Lu, and H. Lu, A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment, Solar Energy, Vol. 140, pp.236-240, 2016.
https://doi.org/10.1016/j.solener.2016.11.016

J. Tanesab, D. Parlevliet, J. Whale, and T. Urmee, Seasonal effect of dust on the degradation of PV modules performance deployed in different climate areas, Renewable Energy, Vol. 111, pp.105-115, 2017.
https://doi.org/10.1016/j.renene.2017.03.091

M. Abderrezek, and M. Fathi, Experimental study of the dust effect on photovoltaic panels' energy yield, Solar Energy, Vol. 142, pp.308-320, 2017.
https://doi.org/10.1016/j.solener.2016.12.040

U. Mehmood, F.A. Al-Sulaiman, and B.S. Yilbas, Characterization of dust collected from PV modules in the area of Dhahran, Kingdom of Saudi Arabia, and its impact on protective transparent covers for photovoltaic applications, Solar Energy, 141, pp.203-209, 2017.
https://doi.org/10.1016/j.solener.2016.11.051

Y. Guan, H. Zhang, B. Xiao, Z. Zhou, and X. Yan, In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules, Renewable Energy, Vol. 101, pp.1273-1284, 2017.
https://doi.org/10.1016/j.renene.2016.10.009

A. Gholami, I. Khazaee, S. Eslami, M. Zandi, and E. Akrami, Experimental investigation of dust deposition effects on photo-voltaic output performance, Solar Energy, Vol. 159, pp.346-352, 2018.
https://doi.org/10.1016/j.solener.2017.11.010

C. Fountoukis, B. Figgis, L. Ackermann, and M.A. Ayoub, Effects of atmospheric dust deposition on solar PV energy production in a desert environment, Solar Energy, 164, pp.94-100, 2018.
https://doi.org/10.1016/j.solener.2018.02.010

H. Lu, and W. Zhao, Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system, Applied Energy, Vol. 220, pp.514-526, 2018.
https://doi.org/10.1016/j.apenergy.2018.03.095

L. Xingcai, and N. Kun, Effectively predict the solar radiation transmittance of dusty photovoltaic panels through Lambert-Beer law, Renewable Energy, Vol. 123, pp.634-638, 2018.
https://doi.org/10.1016/j.renene.2018.02.046

A. Einhorn, L. Micheli, D. C. Miller, L. J. Simpson, H. R. Moutinho, B. To, C. L. Lanaghan, M. T. Muller, S. Toth, J. J. John, and S. Warade, Evaluation of soiling and potential mitigation approaches on photovoltaic glass, IEEE Journal of Photovoltaics, Vol. 9, n. 1, pp.233-239, 2018.
https://doi.org/10.1109/JPHOTOV.2018.2878286

A. Salari, and A. Hakkaki-Fard, A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems, Renewable Energy, Vol. 135, pp.437-449, 2019.
https://doi.org/10.1016/j.renene.2018.12.018

L. Micheli, J.A. Caballero, E.F. Fernandez, G.P. Smestad, G. Nofuentes, T.K. Mallick, and F. Almonacid, Correlating photovoltaic soiling losses to waveband and single-value transmittance measurements, Energy, Vol. 180, pp.376-386, 2019.
https://doi.org/10.1016/j.energy.2019.05.097

M. Al-Addous, Z. Dalala, F. Alawneh, and C.B. Class, Modeling and quantifying dust accumulation impact on PV module performance, Solar Energy, 194, pp.86-102, 2019.
https://doi.org/10.1016/j.solener.2019.09.086

A. Arias-Rosales, and P.R. LeDuc, Modeling the transmittance of anisotropic diffuse radiation towards estimating energy losses in solar panel coverings, Applied Energy, Vol. 268, p.114872, 2020.
https://doi.org/10.1016/j.apenergy.2020.114872

H. Lu, R. Cai, L.Z. Zhang, L. Lu, and L. Zhang, Experimental investigation on deposition reduction of different types of dust on solar PV cells by self-cleaning coatings, Solar Energy, Vol. 206, pp.365-373, 2020.
https://doi.org/10.1016/j.solener.2020.06.012

S. Oh, B.W. Figgis, and S. Rashkeev, Effects of thermophoresis on dust accumulation on solar panels, Solar Energy, Vol. 211, pp.412-417, 2020.
https://doi.org/10.1016/j.solener.2020.09.053

Z.A. Darwish, K. Sopian, and A. Fudholi, Reduced output of photovoltaic modules due to different types of dust particles, Journal of Cleaner Production, Vol. 280, p.124317, 2021.
https://doi.org/10.1016/j.jclepro.2020.124317

S. Dubey, J.N. Sarvaiya, and B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-a review, Energy Procedia, Vol. 33, pp.311-321, 2013.
https://doi.org/10.1016/j.egypro.2013.05.072

M. Woodhouse, R. Jones-Albertus, D. Feldman, R. Fu, K. Horowitz, D. Chung, D. Jordan, and S. Kurtz, On the path to sunshot. The role of advancements in solar photovoltaic efficiency, reliability, and costs (No. NREL/TP-6A20-65872). National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016.
https://doi.org/10.2172/1253983

Z. Peng, M.R. Herfatmanesh, and Y. Liu, Cooled solar PV panels for output energy efficiency optimisation, Energy conversion and management, Vol. 150, pp.949-955, 2017.
https://doi.org/10.1016/j.enconman.2017.07.007

B. Pakkiraiah, G. Durga Sukumar, Research Survey on Various MPPT Performance Issues to Improve the Solar PV System Efficiency, Journal of Solar Energy, vol. 2016, Article ID 8012432, 20 pages, 2016.
https://doi.org/10.1155/2016/8012432

P. Prudhvi, and P.C. Sai, Efficiency improvement of solar PV panels using active cooling, 11th International Conference on Environment and Electrical Engineering, Venice, 2012, pp. 1093-1097.
https://doi.org/10.1109/EEEIC.2012.6221543

Y. Su, L.C. Chan, L. Shu, and K.L. sui, Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems, Applied Energy, Vol. 93, pp.319-326, 2012.
https://doi.org/10.1016/j.apenergy.2011.12.052

Y. Zhao, M.Y. Sheng, W.X. Zhou, Y. Shen, E.T. Hu, J.B. Chen, M. Xu, Y.X. Zheng, Y.P. Lee, D.W. Lynch and L.Y. Chen, A solar photovoltaic system with ideal efficiency close to the theoretical limit, Optics express, Vol. 20, n. 101, pp. A28-A38, 2012.
https://doi.org/10.1364/OE.20.000A28

R. Bjørk, and K.K. Nielsen, The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system, Solar Energy, 120, pp.187-194, 2015.
https://doi.org/10.1016/j.solener.2015.07.035

M. Das, and V. Agarwal, Novel high-performance stand-alone solar PV system with high-gain high-efficiency DC-DC converter power stages, IEEE Transactions on Industry Applications, Vol. 51, n. 6, pp.4718-4728, 2015.
https://doi.org/10.1109/TIA.2015.2454488

E.B. Agyekum, S. PraveenKumar, N.T. Alwan, V.I. Velkin, S.E. Shcheklein, and S.J. Yaqoob, Experimental investigation of the effect of a combination of active and passive cooling mechanism on the thermal characteristics and efficiency of solar PV module, Inventions, Vol. 6, n. 4, p.63, 2021.
https://doi.org/10.3390/inventions6040063

J. Yazdanpanahi, F. Sarhaddi, and M.M. Adeli, Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses, Solar Energy, Vol. 118, pp.197-208, 2015.
https://doi.org/10.1016/j.solener.2015.04.038

J. Latvels, R. Grzibovskis, A. Vembris, and D. Blumberga, Improvement of Solar PV Efficiency, Potential Materials for Organic Photovoltaic Cells, Environmental & Climate Technologies, Vol. 12, n. 1, pp28-33, 2013.
https://doi.org/10.2478/rtuect-2013-0013

P. Wang, J. Xie, L. Ni, L. Wan, K. Ou, L. Zheng, L. and K. Sun, Reducing the effect of dust deposition on the generating efficiency of solar PV modules by super-hydrophobic films, Solar Energy, Vol. 169, pp.277-283, 2018.
https://doi.org/10.1016/j.solener.2017.12.052

Z. Wang, Y. Li, K. Wang, and Z. Huang, Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis, Renewable and Sustainable Energy Reviews, Vol. 76, pp.1153-1162, 2017.
https://doi.org/10.1016/j.rser.2017.03.119

Y. Zhang, and H. Liu, Nanowires for high-efficiency, low-cost solar photovoltaics, Crystals, Vol. 9, n. 2, p.87, 2019.
https://doi.org/10.3390/cryst9020087

L. Zhang, S.S. Yu, T. Fernando, H.H.C. Iu, and K.P. Wong, An online maximum power point capturing technique for high-efficiency power generation of solar photovoltaic systems, Journal of Modern Power Systems and Clean Energy, Vol. 7, n. 2, pp.357-368, 2019.
https://doi.org/10.1007/s40565-018-0440-2

H.R. Alamri, H. Rezk, H. Abd-Elbary, H.A. Ziedan, and A. Elnozahy, 2020. Experimental investigation to improve the energy efficiency of solar PV panels using hydrophobic SiO2 nanomaterial, Coatings, Vol. 10, n. 5, p.503, 2020.
https://doi.org/10.3390/coatings10050503

T. Klemm, A. Hassabou, A. Abdallah, and O. Andersen, Thermal energy storage with phase change materials to increase the efficiency of solar photovoltaic modules, Energy Procedia, Vol. 135, pp.193-202, 2017.
https://doi.org/10.1016/j.egypro.2017.09.502

T. Lodh, N. Pragallapati, and V. Agarwal, Novel control scheme for an interleaved flyback converter based solar PV microinverter to achieve high efficiency, IEEE Transactions on industry applications, Vol. 54, n. 4, pp.3473-3482, 2018.
https://doi.org/10.1109/TIA.2018.2818655

D. M. Bierman, A. Lenert, and E.N. Wang, Spectral splitting optimization for high-efficiency solar photovoltaic and thermal power generation, Applied Physics Letters, Vol. 109, n. 24, p.243904, 2016.
https://doi.org/10.1063/1.4971309

U. Mustafa, I.A. Qeays, M.S. BinArif, S.M. Yahya, and S.B. Md. Ayob, Efficiency improvement of the solar PV-system using nanofluid and developed inverter topology, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp.1-17, 2020.
https://doi.org/10.1080/15567036.2020.1808119

K. Yadav, A. Kumar, O.S. Sastry, and R. Wandhare, Solar photovoltaics pumps operating head selection for the optimum efficiency, Renewable Energy, 134, pp.169-177, 2019.
https://doi.org/10.1016/j.renene.2018.11.013

H.D. Raval, S. Maiti, S. and A. Mittal, Computational fluid dynamics analysis and experimental validation of improvement in overall energy efficiency of a solar photovoltaic panel by thermal energy recovery, Journal of Renewable and Sustainable Energy, Vol. 6, n. 3, p.033138, 2014.
https://doi.org/10.1063/1.4885178

P.C. Hsu, B.J. Huang, P.H. Wu, W.H. Wu, M.J. Lee, J.F. Yeh, Y.H. Wang, J.H. Tsai, K. Li, and K.Y. Lee, Long-term energy generation efficiency of solar PV system for self-consumption, Energy Procedia, Vol. 141, pp.91-95, 2017.
https://doi.org/10.1016/j.egypro.2017.11.018

D.K. Sharma, and G. Purohit, Analysis of the effect of fill factor on the efficiency of solar PV system for improved design of MPPT, 6th world conference on photo voltaic energy conversion, Japan, 2014.

Y. Li, S. Samad, F.W. Ahmed, S.S. Abdulkareem, S. Hao, and A. Rezvani, 2020. Analysis and enhancement of PV efficiency with hybrid MSFLA-FLC MPPT method under different environmental conditions, Journal of Cleaner Production, Vol. 271, p.122195, 2020.
https://doi.org/10.1016/j.jclepro.2020.122195

Boada Medina, M., Prieto, K., Mesa, F., Aristizabal, A., Design and Analysis of Renewable Energy Microgrids for Operations in Different Latitudes by Applying Fuzzy Logic Modeling, (2022) International Journal on Engineering Applications (IREA), 10 (1), pp. 1-14.
https://doi.org/10.15866/irea.v10i1.20386


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize