Open Access Open Access  Restricted Access Subscription or Fee Access

Factors Affecting the Thermodynamic Performance of the Stirling Engines: a Review Study


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i10.22549

Abstract


Stirling engines are efficient heat engines distinguished by their capacity to employ alternate fuel sources as a source of heat, such as solar energy, making them an important study issue. The goal of this research is to discover new ways and strategies for improving Stirling engine performance for future development. This article presents reviews a series of research studies on Stirling engine technology, focusing on the main factors and characteristics influencing engine performance, such as Stirling engine types and mechanical configuration, operating parameters, geometric parameters, and working fluid properties. It demonstrated its capacity to work in a varied range of temperatures, and many different types of fuels which can be used as a heat source for operation. Regarding Stirling engine types, the Gamma engine is the most efficient due to its capacity to produce high efficiency and power when compared to Alpha and Beta engines. Stirling engines require working fluids that have high thermal conductivity, high heat capacity, and low viscosity, helium and air are common working fluids used practically. Moreover, phase angle is an important geometric parameter affecting Stirling engine performance. The optimal value is theoretically around 90°. The findings obtained in this article describe the Stirling engine's potential. In conclusion, the mechanical and physical characteristics of the engine and the properties of the working fluids are the most important factors in the performance of Stirling engines.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Renewable Energy; Stirling Engines; Performance Parameters; Thermodynamic Analysis; Optimizations

Full Text:

PDF


References


Nayak, Amrit Om. "Holistic Modeling, Design & Analysis of Integrated Stirling and Auxiliary Clean Energy Systems for Combined Heat and Power Applications." (2015).

F. Martins, C. Felgueiras, M. Smitkova, and N. Caetano, Analysis of fossil fuel energy consumption and environmental impacts in european countries, Energies (Basel), vol. 12, no. 6, 2019.
https://doi.org/10.3390/en12060964

N. Chekir, Y. ben Salem, and I. Marzougui, Small-scale solar stirling engine generator, in 6th IEEE International Energy Conference, ENERGYCon 2020, Sep. 2020, pp. 339-343.
https://doi.org/10.1109/ENERGYCon48941.2020.9236587

Brusco, G., Burgio, A., Menniti, D., Pinnarelli, A., Sorrentino, N., About the Effectiveness, the Electric Demand Profile Impact and the Imbalance Reduction of an Optimal Sized CHP Generator for an Agro-Industrial Microgrid Using Real Data, (2015) International Review of Electrical Engineering (IREE), 10 (3), pp. 362-369.
https://doi.org/10.15866/iree.v10i3.5709

H. Hachem, R. Gheith, F. Aloui, and S. ben Nasrallah, Technological challenges and optimization efforts of the Stirling machine: A review, Energy Conversion and Management, vol. 171. Elsevier Ltd, pp. 1365-1387, Sep. 01, 2018.
https://doi.org/10.1016/j.enconman.2018.06.042

D. G. Thombare and S. K. Verma, Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews, vol. 12, no. 1. pp. 1-38, Jan. 2008.
https://doi.org/10.1016/j.rser.2006.07.001

Y. Timoumi, I. Tlili, and S. ben Nasrallah, Design and performance optimization of GPU-3 Stirling engines, Energy, vol. 33, no. 7. Elsevier Ltd, pp. 1100-1114, 2008.
https://doi.org/10.1016/j.energy.2008.02.005

Nasrollah Naddaf, "Stirling engine cycle efficiency", Bachelor's thesis, 2012.

http://www.bekkoame.ne.jp/~khirata/english/history1.htm

G. Walker and J. R. Senft, Free Piston Stirling Engines, vol. 12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985.
https://doi.org/10.1007/978-3-642-82526-2

Finkelstein, Computer Analysis of Stirling Engines, 1975.

B. Urieli, Stirling Cycle Engine Analysis, 1984.

T. Abishu Gelu, J. Luís Toste de Azevedo Edgar Caetano Fernandes, J. Alberto Caiado Falcão de Campos Supervisor, and E. Caetano Fernandes, "Analysis of Stirling engine and comparison with other technologies using low temperature heat sources Energy Engineering and Management Examination Committee," 2014.

B. Kongtragool and S. Wongwises, A review of solar-powered Stirling engines and low temperature differential Stirling engines, Renewable and Sustainable Energy Reviews, vol. 7, no. 2. pp. 131-154, Apr. 2003.
https://doi.org/10.1016/S1364-0321(02)00053-9

A. Ross, Making Stirling Engines, 1993.

A. Wagner, Calculations and experiments on y-type Stirling engines, 2008.

Iker González Pino, Modeling, expermental characterization and simulation of Stirling engine based micro-cogeneration plants for residential buildings, 2019.

S. Zhu, G. Yu, K. Liang, W. Dai, and E. Luo, A review of Stirling-engine-based combined heat and power technology, Appl Energy, vol. 294, Jul. 2021.
https://doi.org/10.1016/j.apenergy.2021.116965

D. Menniti, N. Sorrentino, A. Pinnarelli, A. Burgio, G. Brusco, and G. Belli, The concentrated solar power system with Stirling technology in a micro-grid: The simulation model, in 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014, 2014, pp. 253-260.
https://doi.org/10.1109/SPEEDAM.2014.6872095

H. Ferral-Smith, G. Giannakakis, J. Wilson, and J. Taylor, Factors Influencing the Thermodynamic Efficiency of Stirling Engines, PAM Review Energy Science & Technology, vol. 4, pp. 17-29, Jun. 2017.
https://doi.org/10.5130/pamr.v4i0.1459

C. Cinar, S. Yucesu, T. Topgul, and M. Okur, Beta-type Stirling engine operating at atmospheric pressure, Appl Energy, vol. 81, no. 4, pp. 351-357, 2005.
https://doi.org/10.1016/j.apenergy.2004.08.004

D. Mishra and S. Chaudhary, Thermodynamic Modeling And Performance Analysis of Stirling Engine Cycle, 2014.

M. Ni et al., Improved Simple Analytical Model and experimental study of a 100 W β-type Stirling engine, Appl Energy, vol. 169, pp. 768-787, May 2016.
https://doi.org/10.1016/j.apenergy.2016.02.069

Ç. S. S. S. Ç. A. K. F. Özgören YÖ, Predictive modeling of perform ance of a helium charged stirling engine using an artificial neural network.

T. Abishu Gelu, J. Luís Toste de Azevedo Edgar Caetano Fernandes, J. Alberto Caiado Falcão de Campos Supervisor, and E. Caetano Fernandes, Analysis of Stirling engine and comparison with other technologies using low temperature heat sources Energy Engineering and Management Examination Committee, 2014.

S. Suyitno, A. Hissen, W. Endra Juwana, O. Dwi Hanggara Putra, and S. Huda, "Effects of Working Fluids on the Performance of Stirling Engine, The 12th Annual National Seminar of Mechanical Engineering (SNTTM XII), 2013.
https://doi.org/10.13140/2.1.2365.3125

C. Yang, N. Zhuang, W. Du, H. Zhao, and X. Tang, Modified Stirling cycle thermodynamic model IPD-MSM and its application, Energy Convers Manag, vol. 260, May 2022.
https://doi.org/10.1016/j.enconman.2022.115630

H. Hachem, R. Gheith, and F. Aloui, Theoretical investigations of Stirling engine performances for different filling gas properties, Int J Energy Res, 2022.
https://doi.org/10.1002/er.7875

Stirling Engine Assessment. [Online]. Available: www.epri.com

G. Moonka, H. Surana, and H. R. Singh, Study on some aspects of Stirling engine: A path to solar Stirling engines, Mater Today Proc, 2022.
https://doi.org/10.1016/j.matpr.2022.05.107

M. H. Ahmadi, M. A. Ahmadi, and F. Pourfayaz, Thermal models for analysis of performance of Stirling engine: A review, Renewable and Sustainable Energy Reviews, vol. 68. Elsevier Ltd, pp. 168-184, Feb. 01, 2017.
https://doi.org/10.1016/j.rser.2016.09.033

A. Asnaghi, S. M. Ladjevardi, P. Saleh Izadkhast, and A. H. Kashani, Thermodynamics Performance Analysis of Solar Stirling Engines, ISRN Renewable Energy, vol. 2012, pp. 1-14, Jul. 2012.
https://doi.org/10.5402/2012/321923

A. Rahmati, S. M. Varedi-Koulaei, M. H. Ahmadi, and H. Ahmadi, Dimensional synthesis of the Stirling engine based on optimizing the output work by evolutionary algorithms, Energy Reports, vol. 6, pp. 1468-1486, Nov. 2020.
https://doi.org/10.1016/j.egyr.2020.05.030

K. Laazaar and N. Boutammachte, New approach of decision support method for Stirling engine type choice towards a better exploitation of renewable energies, Energy Convers Manag, vol. 223, Nov. 2020.
https://doi.org/10.1016/j.enconman.2020.113326

A. Abuelyamen and R. Ben-Mansour, Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modeling, International Journal of Thermal Sciences, vol. 132, pp. 411-423, Oct. 2018.
https://doi.org/10.1016/j.ijthermalsci.2018.06.026

C. Stumpf, Parameter Optimization of a Low Temperature Difference Gamma-Type Stirling Engine to Maximize Shaft Power, 2019. [Online]. Available:
https://www.researchgate.net/publication/337011874

H. Snyman, T. M. Harms, and J. M. Strauss, Design analysis methods for Stirling engines, 2008.
https://doi.org/10.17159/2413-3051/2008/v19i3a3329

E. Eid, Performance of a beta-configuration heat engine having a regenerative displacer, Renew Energy, vol. 34, no. 11, pp. 2404-2413, Nov. 2009.
https://doi.org/10.1016/j.renene.2009.03.016

D. J. Shendage, S. B. Kedare, and S. L. Bapat, An analysis of beta type Stirling engine with rhombic drive mechanism, Renew Energy, vol. 36, no. 1, pp. 289-297, Jan. 2011.
https://doi.org/10.1016/j.renene.2010.06.041

P. Puech and V. Tishkova, Thermodynamic analysis of a Stirling engine including regenerator dead volume, Renew Energy, vol. 36, no. 2, pp. 872-878, Feb. 2011.
https://doi.org/10.1016/j.renene.2010.07.013

M. C. Campos, J. V. C. Vargas, and J. C. Ordonez, Thermodynamic optimization of a Stirling engine, Energy, vol. 44, no. 1, pp. 902-910, 2012.
https://doi.org/10.1016/j.energy.2012.04.060

J. L. Salazar and W. L. Chen, A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-type Stirling engine, Energy Convers Manag, vol. 88, pp. 177-188, 2014.
https://doi.org/10.1016/j.enconman.2014.08.040

R. Gheith, F. Aloui, M. Tazerout, and S. ben Nasrallah, Experimental investigations of a gamma Stirling engine, Int J Energy Res, vol. 36, no. 12, pp. 1175-1182, Oct. 2012.
https://doi.org/10.1002/er.1872

L. S. Scollo, P. E. Valdez, S. R. Santamarina, M. R. Chini, and J. H. Barón, Twin cylinder alpha stirling engine combined model and prototype redesign, Int J Hydrogen Energy, vol. 38, no. 4, pp. 1988-1996, Feb. 2013.
https://doi.org/10.1016/j.ijhydene.2012.01.180

G. Féniès, F. Formosa, J. Ramousse, and A. Badel, Double acting Stirling engine: Modeling, experiments and optimization, Appl Energy, vol. 159, pp. 350-361, Dec. 2015.
https://doi.org/10.1016/j.apenergy.2015.08.128

R. Li, L. Grosu, and D. Queiros-Condé, Losses effect on the performance of a Gamma type Stirling engine, Energy Convers Manag, vol. 114, pp. 28-37, Apr. 2016.
https://doi.org/10.1016/j.enconman.2016.02.007

M. H. Ahmadi, M. A. Ahmadi, and M. Mehrpooya, Investigation of the effect of design parameters on power output and thermal efficiency of a Stirling engine by thermodynamic analysis, International Journal of Low-Carbon Technologies, vol. 11, no. 2, pp. 141-156, May 2016.
https://doi.org/10.1093/ijlct/ctu030

M. Chahartaghi and M. Sheykhi, Energy and exergy analyses of beta-type Stirling engine at different working conditions, Energy Convers Manag, vol. 169, pp. 279-290, Aug. 2018.
https://doi.org/10.1016/j.enconman.2018.05.064

S. Ranieri, G. A. O. Prado, and B. D. MacDonald, Efficiency reduction in stirling engines resulting from sinusoidal motion, Energies (Basel), vol. 11, no. 11, Nov. 2018.
https://doi.org/10.3390/en11112887

J. Egas and D. M. Clucas, Stirling engine configuration selection, Energies (Basel), vol. 11, no. 3, Feb. 2018.
https://doi.org/10.3390/en11030584

E. Rogdakis, P. Bitsikas, G. Dogkas, and G. Antonakos, Three-dimensional CFD study of a β-type Stirling Engine, Thermal Science and Engineering Progress, vol. 11, pp. 302-316, Jun. 2019.
https://doi.org/10.1016/j.tsep.2019.04.012

B. Rutczyk, I. Szczygieł, and Z. Buliński, A zero-dimensional, real gas model of an α Stirling engine, Energy Convers Manag, vol. 199, Nov. 2019.
https://doi.org/10.1016/j.enconman.2019.111995

Z. Buliński et al., A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions, Energy Convers Manag, vol. 195, pp. 125-138, Sep. 2019.
https://doi.org/10.1016/j.enconman.2019.04.089

H. Hachem, R. Gheith, F. Aloui, and S. ben Nasrallah, Performance evaluation of Gamma type Stirling engine, International Journal of Control, Energy and Electrical Engineering, Vol. 9, pp. 26-29, 2019.

J. Joseph, E. Mathew Louis, B. Thomas, K. Anurag, V. Sankar, and T. T. Pullan, Fabrication and testing of a gamma type stirling engine, in Materials Today: Proceedings, 2019, vol. 46, pp. 9641-9645.
https://doi.org/10.1016/j.matpr.2020.07.152

D. Erol and S. Çalışkan, The examination of performance characteristics of a beta-type Stirling engine with a rhombic mechanism: The influence of various working fluids and displacer piston materials, Int J Energy Res, vol. 45, no. 9, pp. 13726-13747, Jul. 2021.
https://doi.org/10.1002/er.6702

A. Romanelli, Stirling engine operating at low temperature difference, Am J Phys, vol. 88, no. 4, pp. 319-324, Apr. 2020.
https://doi.org/10.1119/10.0000832

C. Dobre, L. Grosu, M. Costea, and M. Constantin, Beta type stirling engine. Schmidt and finite physical dimensions thermodynamics methods faced to experiments, Entropy, vol. 22, no. 11, pp. 1-15, Nov. 2020.
https://doi.org/10.3390/e22111278

C. H. Cheng and J. S. Huang, Development of a beta-type moderate-temperature-differential stirling engine based on computational and experimental methods, Energies (Basel), vol. 13, no. 22, Nov. 2020.
https://doi.org/10.3390/en13226029

C. H. Cheng and D. T. Phung, Numerical and experimental study of a compact 100-W-class β-type Stirling engine, Int J Energy Res, vol. 45, no. 5, pp. 6784-6799, Apr. 2021.
https://doi.org/10.1002/er.6271

D. Ipci, Thermodynamic analysis of a gamma-type stirling engine driven by Scotch Yoke mechanism, Int J Green Energy, vol. 18, no. 2, pp. 144-155, 2021.
https://doi.org/10.1080/15435075.2020.1831512

R. Masser et al., Optimized piston motion for an alpha-type stirling engine, Entropy, vol. 22, no. 6, pp. 1-19, Jun. 2020.
https://doi.org/10.3390/e22060700

S. Alfarawi, Thermodynamic analysis of rhombic-driven and crank-driven beta-type Stirling engines, Int J Energy Res, vol. 44, no. 7, pp. 5596-5608, Jun. 2020.
https://doi.org/10.1002/er.5309

D. Ipci, Thermodynamic-dynamic analysis of gamma type free-piston stirling engine charged with hydrogen gas as working fluid, Int J Green Energy, vol. 17, no. 12, pp. 805-815, Sep. 2020.
https://doi.org/10.1080/15435075.2020.1798771

K. Mansuriya, B. D. Raja, A. R. Yıldız, A. Mudgal, and V. K. Patel, Thermodynamic optimization of Stirling heat engine with methane gas using finite speed thermodynamic model, Heat Transfer, vol. 50, no. 8, pp. 8155-8172, Dec. 2021.
https://doi.org/10.1002/htj.22271

M. A. Mukhtar, R. A. Bakar, and M. F. Zainudin, Thermodynamic Analysis of a Gamma-configuration Stirling Engine, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 83, no. 2, pp. 114-126, 2021.
https://doi.org/10.37934/arfmts.83.2.114126

T. Topgül, M. Okur, F. Şahin, and C. Çınar, Experimental investigation of the effects of hot-end and cold-end connection on the performance of a gamma type Stirling engine, Engineering Science and Technology, an International Journal, vol. 36, p. 101152, Dec. 2022.
https://doi.org/10.1016/j.jestch.2022.101152

P. Murti, A. Takizawa, E. Shoji, and T. Biwa, Design guideline for multi-cylinder-type liquid-piston Stirling engine, Appl Therm Eng, vol. 200, Jan. 2022.
https://doi.org/10.1016/j.applthermaleng.2021.117635

T. Kumaravelu, S. Saadon, and A. R. Abu Talib, Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system, Energy, vol. 239, Jan. 2022.
https://doi.org/10.1016/j.energy.2021.121881

K. M. Bataineh and M. F. Maqableh, A new numerical thermodynamic model for a beta-type Stirling engine with a rhombic drive, Thermal Science and Engineering Progress, vol. 28, Feb. 2022.
https://doi.org/10.1016/j.tsep.2021.101071

M. H. Katooli, R. Askari Moghadam, and M. Mehrpooya, Design optimization of a heat-to-cool Stirling cycle using artificial neural network, Int J Energy Res, Jun. 2022.
https://doi.org/10.1002/er.7890

M. Yu, C. Shi, J. Xie, P. Liu, Z. Liu, and W. Liu, Constructal design of a circular micro-channel Stirling regenerator based on exergy destruction minimization, Int J Heat Mass Transf, vol. 183, Feb. 2022.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122240


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize