Open Access Open Access  Restricted Access Subscription or Fee Access

Asymptotic Modeling of Subsonic Potential Laminar Viscous Flow Over a NACA Airfoil: Simulation and Experimentation Validation


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i9.22546

Abstract


The aim of this paper is to solve the singular perturbation equation modeling potential laminar viscous flow in compressible subsonic regime at high Reynolds number to count for the shock wave boundary layer interaction. By means of singular perturbations methods, two distinguished models are defined and solved, i.e. the boundary layer viscous flow model and the outer inviscid flow model. The obtained theoretical solution compares well with both the results of a NACA 43013 airfoil produced by numerical simulation conducted using ANSYS fluent and AF300 wind tunnel experiments. At low angle of incidence and attached flow, validation of the theoretical results, compared to numerical simulations, shows good agreement in case of laminar boundary layer flow and in the presence of shockwaves. The mean relative error is under 6%. Meanwhile, the model becomes less accurate, when compared with experimental results, as the flow becomes turbulent towards the trailing edge of the airfoil. The mean relative error is 10%.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Subsonic Compressible Flow; Potential Viscous Flow; Laminar Flow; Perturbation Methods; Asymptotic Methods; Wind Tunnel Experimentation

Full Text:

PDF


References


El-Aajine, O., Eddegdag, N., Naamane, A., Radouani, M., El Fahime, B., Asymptotic Modeling of a Viscous Laminar Flow Around Thin Airfoils: Resolution and Experimental Treatment in Case of Supersonic Flow, (2022) International Review of Mechanical Engineering (IREME), 16 (1), pp. 14-28.
https://doi.org/10.15866/ireme.v16i1.21870

Omar El-aajine, Azeddine Naamane, Mohammed Radouani, Benaissa El fahime. (2022). Successive Complementary Expansion Method for Solving Supersonic Laminar Flow Over Thin Airfoils& Numerical Simulation. International Journal of Fluid Machinery and Systems, 15(3), 376-384.
https://doi.org/10.5293/IJFMS.2022.15.3.376

Datta V. Gaitonde, Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences. Volume 72, January 2015, Pages 80-99.
https://doi.org/10.1016/j.paerosci.2014.09.002

Neil D. Sandham Shock-Wave/Boundary-Layer Interactions. Aerodynamics and Flight Mechanics Research Group.
University of Southampton. Southampton SO17 1BJ.

Holger Babinsky, Hideaki Ogawa, SBLI control for wings and inlets. Shock Waves (2008) 18:89-96.
https://doi.org/10.1007/s00193-008-0149-7

Tamal Jana and Mrinal Kaushik. Survey of control techniques to alleviate repercussions of shock-wave and boundary-layer interactions.
Advances in Aerodynamics (2022) 4:27.
https://doi.org/10.1186/s42774-022-00119-9

Jelena Svorcan, Jonathan M.Wang and Kevin Patrick Griffin. Current state and future trends in boundary layer control on lifting surfaces. Advanced Practices in Aerospace and Energy Engineering - Review. 2022, Vol. 14(7) 1-23.
https://doi.org/10.1177/16878132221112161

Radyadour KH. Zeytounian, Asymptotic Modeling of Fluid Flow Phenomena.
(KLUWER ACADEMIC PUBLISHERS, 2002).

Jean Cousteix & Jacques Mauss. Asymptotic analysis and boundary layer. (Springer, 2006).
https://doi.org/10.1007/978-3-540-46489-1

L. Prandtl. On motion of fluids with very little viscosity. Third International Congress of Mathematics, Heidelberg, March 1, 1928.

Jean le Rond d'Alembert, Essai d'une nouvelle théorie de la résistance des fluides (Essay of A New Theory of Fluid Resistance), Paris, 1752 (in French).

G. Grimberg, W. Pauls, U. Frisch. Genesis of d'Alembert's paradox and analytical elaboration of the drag problem. Physica D: Nonlinear Phenomena. Volume 237, Issues 14-17, 15 August 2008, Pages 1878-1886.
https://doi.org/10.1016/j.physd.2008.01.015

Radyadour KH. Zeytounian, Asymptotic Modeling of Fluid Flow Phenomena (Fluid Mechanics and its Applications Volume 64).
(KLUWER ACADEMIC PUBLISHERS, 2002). Chapter 12 p.471.

Jean Cousteix & Jacques Mauss. Asymptotic analysis and boundary layer (Mathematics and Applications) (Springer, 2006).
https://doi.org/10.1007/978-3-540-46489-1

A. Naamane, & M. Hasnaoui. (2019). Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation. International Journal of Mechanical, Industrial and Aerospace Sciences, 12.0(6).
https://doi.org/10.5281/zenodo.3299495

M. Hasnaoui, A. Naamane, H. Akhmari, Asymptotic modeling the Aerodynamic coefficients of the NACA Airfoil. Modeling, IIETA Journals, Measurement and Control B Vol. 88, No. 2-4, Page: 62-63 (2019).
https://doi.org/10.18280/mmc_b.882-403

Jean Délery, Jean-Paul Dussauge. Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19:453-468. (2009).
https://doi.org/10.1007/s00193-009-0220-z

Wei Huang, Han Wu, Yan-guang Yang, Li Yan, Shi-bin Li. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows. Acta Astronautica 174 (2020)103-122.
https://doi.org/10.1016/j.actaastro.2020.05.001

Arthur E. P. Veldman. Matched asymptotic expansions and the numerical treatment of viscous-inviscid interaction. Journal of Engineering Mathematics. March 2001.
https://doi.org/10.1007/978-94-010-0698-9_10

Radyadour KH. Zeytounian, Asymptotic Modeling of Fluid Flow Phenomena. (KLUWER ACADEMIC PUBLISHERS, 2002). Chapter 12, P 471.

R. E. Meyer. A View of the Triple Deck. SIAM Journal on Applied Mathematics 1983 43:4, 639-663.
https://doi.org/10.1137/0143044

http://airfoiltools.com/airfoil/naca5digit?MNaca5DigitForm%5Bcl%5D=0.6&MNaca5DigitForm%5BposKey%5D=15_0&MNaca5DigitForm%5Bthick%5D=13&MNaca5DigitForm%5BnumPoints%5D=81&MNaca5DigitForm%5BcosSpace%5D=0&MNaca5DigitForm%5BcosSpace%5D=1&MNaca5DigitForm%5BcloseTe%5D=0&yt0=Plot

Marinus, B., Vercauteren, J., Vandenberghe, R., Smeulders, J., Laminar-Turbulent Transition on a Cambered NACA 16-009 Airfoil at Low Speed, (2020) International Review of Mechanical Engineering (IREME), 14 (6), pp. 351-359.
https://doi.org/10.15866/ireme.v14i6.17788

Espinel, E., Rojas, J., Florez Solano, E., Computational Fluid Dynamics Study of NACA 0012 Airfoil Performance with OpenFOAM®, (2021) International Review of Aerospace Engineering (IREASE), 14 (4), pp. 201-210.
https://doi.org/10.15866/irease.v14i4.19348

Marchetto, F., Benini, E., Numerical Simulation of Harmonic Pitching Supercritical Airfoils Equipped with Movable Gurney Flaps, (2019) International Review of Aerospace Engineering (IREASE), 12 (3), pp. 109-122.
https://doi.org/10.15866/irease.v12i3.16723


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize