Open Access Open Access  Restricted Access Subscription or Fee Access

Product Development Using Bio-Reinforced Polymer Matrix Composites for Car Bumper Beam


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i6.22193

Abstract


Product development of a car bumper beam is a critical activity since it is important in order to reduce an impact during a car collision. Currently, most of the production of the bumper beam is manufactured using existing materials such as aluminium. This material has the potential to be replaced with a more environmentally friendly material, which is the bio-reinforced polymer matrix composites. However, engineers are facing problems during the selection of materials selection to form these composites due to properties variations and muti-combinations of materials. In order to overcome this problem, Quality Function Deployment (QFD), Analytic Hierarchy Process (AHP), and Finite Element Analysis (FEA) have been combined to perform the material selection. The objective of this paper is to obtain the best bio-reinforced polymer matrix composites for the application of a car bumper beam. The result has indicated that the flax reinforced polypropylene (Flax+PP) has been the best material obtaining the best normalized score of 0.387, followed by kenaf reinforced polypropylene (0.335), and sisal reinforced polypropylene (0.122).
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Product Development; Car Bumper Beam; Bio-reinforced Polymer Matrix Composites; Natural Fibre; Polymer; Quality Function Deployment; Analytic Hierarchy Process; Finite Element Analysis

Full Text:

PDF


References


P. Chatterjee, S. Chakraborty, Material Selection using Preferential Ranking Methods, Materials and Design, 35, pp. 384-393, 2012.
https://doi.org/10.1016/j.matdes.2011.09.027

M. M. Davoodi, S. M. Sapuan, A. Aidy, N. A. Osman, A. A. Oshkour, W. W. Abas, Development Process of New Bumper Beam for Passenger Car: A Review, Materials & Design, 40, pp. 304-313, 2012.
https://doi.org/10.1016/j.matdes.2012.03.060

V. Naik, M. Kumar, A Review on Natural Fiber Composite Material in Automotive Applications, Engineered Science, 18, pp. 1-10, 2021.
https://doi.org/10.30919/es8d589

L. O. Afolabi, P. S. M. Megat-Yusoff, Z. M. Ariff, M. S. Hamizol, Fabrication of Pandanus Tectorius (Screw-Pine) Natural Fiber using Vacuum Resin Infusion for Polymer Composite Application, Journal of Materials Research and Technology, 8(3), pp. 3102-3113, 2019.
https://doi.org/10.1016/j.jmrt.2017.05.021

Kastiawan, I., Sutantra, I., Sutikno, S., Effect of Bottom Ash Treatment and Process Variables on the Strength of Polypropylene Composites, (2020) International Review of Mechanical Engineering (IREME), 14 (5), pp. 324-330.
https://doi.org/10.15866/ireme.v14i5.18804

Sivakumar, D., Ng, L., Subramaniam, K., Bapokutty, O., Pilvamangalam, N., Ab Ghani, A., Charpy Impact Response of Fibre-Metal Laminates Based on Woven Kenaf/Glass Fibre Reinforced Polypropylene, (2020) International Journal on Engineering Applications (IREA), 8 (2), pp. 58-63.
https://doi.org/10.15866/irea.v8i2.17830

Godara, S. S., & Nagar, S. N. (2020). Analysis of frontal bumper beam of automobile vehicle by using carbon fiber composite material. Materials Today: Proceedings, 26, 2601-2607.
https://doi.org/10.1016/j.matpr.2020.02.550

Sapuan, S. M., Ilyas, R. A., & Asyraf, M. R. M. (2022). Safety Issues in Transportation Design. Safety and Health in Composite Industry, 267-291.
https://doi.org/10.1007/978-981-16-6136-5_13

Tisza, M., & Czinege, I. (2018). Comparative study of the application of steels and aluminium in lightweight production of automotive parts. International Journal of Lightweight Materials and Manufacture, 1(4), 229-238.
https://doi.org/10.1016/j.ijlmm.2018.09.001

Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2021). Natural fiber-reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), 238-284.
https://doi.org/10.1177/0892705719844546

B. F. Yousif, A. Shalwan, C. W. Chin, K. C. Ming, Flexural Properties of Treated and Untreated Kenaf/Epoxy Composites, Materials & Design, 40, pp. 378-385, 2012.
https://doi.org/10.1016/j.matdes.2012.04.017

N. Saba, M. T. Paridah, M. Jawaid, Mechanical Properties of Kenaf Fibre Reinforced Polymer Composite: A Review, Construction and Building Materials, 76, pp. 87-96, 2015.
https://doi.org/10.1016/j.conbuildmat.2014.11.043

S. P. Singaraj, K. P. Aaron, K. Kaliappa, K. Kattaiya, M. Ranganathan, Investigations on Structural, Mechanical and Thermal Properties of Banana Fabrics for Use in Leather Goods Application, Journal of Natural Fibers, 18(11), pp. 1618-1628, 2021.
https://doi.org/10.1080/15440478.2019.1697982

N. Fantuzzi, M. Bacciocchi, D. Benedetti, J. Agnelli, The Use of Sustainable Composites for the Manufacturing of Electric Cars, Composites Part C: Open Access, 4, p. 100096, 2021.
https://doi.org/10.1016/j.jcomc.2020.100096

H. A. Aisyah , M. T. Paridah , S. M. Sapuan , A. Khalina ,O. B. Berkalp, S. H. Lee, C. H. Lee, N. M. Nurazzi, N. Ramli, M. S. Wahab, and R. A. Ilyas, Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels, International Journal of Polymer Science, 2019.
https://doi.org/10.20944/preprints201901.0264.v2

P. Chatterjee, S. Chakraborty, Material Selection using Preferential Ranking Methods, Materials and Design, 35, pp. 384-393, 2012.
https://doi.org/10.1016/j.matdes.2011.09.027

M. M. Davoodi, S. M. Sapuan, A. Aidy, N. A. Osman, A. A. Oshkour, W. W. Abas, Development Process of New Bumper Beam for Passenger Car: A Review, Materials & Design, 40, pp. 304-313, 2012.
https://doi.org/10.1016/j.matdes.2012.03.060

Raza, S., Zhang, J., Ali, I., Li, X., & Liu, C. (2020). Recent trends in the development of biomass-based polymers from renewable resources and their environmental applications. Journal of the Taiwan Institute of Chemical Engineers, 115, 293-303.
https://doi.org/10.1016/j.jtice.2020.10.013

V. Naik, M. Kumar, A Review on Natural Fiber Composite Material in Automotive Applications, Engineered Science, 18, pp. 1-10, 2021.
https://doi.org/10.30919/es8d589

L. O. Afolabi, P. S. M. Megat-Yusoff, Z. M. Ariff, M. S. Hamizol, Fabrication of Pandanus Tectorius (Screw-Pine) Natural Fiber using Vacuum Resin Infusion for Polymer Composite Application, Journal of Materials Research and Technology, 8(3), pp. 3102-3113, 2019.
https://doi.org/10.1016/j.jmrt.2017.05.021

B. F. Yousif, A. Shalwan, C. W. Chin, K. C. Ming, Flexural Properties of Treated and Untreated Kenaf/Epoxy Composites, Materials & Design, 40, pp. 378-385, 2012.
https://doi.org/10.1016/j.matdes.2012.04.017

N. Saba, M. T. Paridah, M. Jawaid, Mechanical Properties of Kenaf Fibre Reinforced Polymer Composite: A Review, Construction and Building Materials, 76, pp. 87-96, 2015.
https://doi.org/10.1016/j.conbuildmat.2014.11.043

S. P. Singaraj, K. P. Aaron, K. Kaliappa, K. Kattaiya, M. Ranganathan, Investigations on Structural, Mechanical and Thermal Properties of Banana Fabrics for Use in Leather Goods Application, Journal of Natural Fibers, 18(11), pp. 1618-1628, 2021.
https://doi.org/10.1080/15440478.2019.1697982

N. Fantuzzi, M. Bacciocchi, D. Benedetti, J. Agnelli, The Use of Sustainable Composites for the Manufacturing of Electric Cars, Composites Part C: Open Access, 4, p. 100096, 2021.
https://doi.org/10.1016/j.jcomc.2020.100096

N.N. Ramli, Y. Mazlan, Z. Ando, Z. Leman, K. Abdan, A. A. Aziz, and N. A. Sairy, Natural fiber for green technology in automotive industry: a brief review. IOP Conference Series: Materials Science and Engineering, 368(1), p. 012012, IOP Publishing, 2018.
https://doi.org/10.1088/1757-899X/368/1/012012

Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & AbdulGhani, A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution?. Current Research in Green and Sustainable Chemistry, 100273.
https://doi.org/10.1016/j.crgsc.2022.100273

Bradu, P., Biswas, A., Nair, C., Sreevalsakumar, S., Patil, M., Kannampuzha, S., Mukherjee, A.G., Wanjari, U.R., Renu, K., Vellingiri, B. and Gopalakrishnan, A.V., 2022. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environmental Science and Pollution Research, pp.1-32.
https://doi.org/10.1007/s11356-022-20024-4

C.D. Marini, N. Fatchurrohman, A. Azhari, and S. Suraya, Product development using QFD, MCDM and the combination of these two methods. IOP Conference Series: Materials Science and Engineering, 114(1), p. 012089. IOP Publishing, 2016.
https://doi.org/10.1088/1757-899X/114/1/012089

I. Canco, D. Kruja, and T. Iancu, AHP, a Reliable Method for Quality Decision Making: A Case Study in Business. Sustainability, 13(24), p.13932, 2021.
https://doi.org/10.3390/su132413932

Cardenas, J., Espinel, E., Rojas, J., Failure Analysis Methodology in Industrial Control Valves Using Quality Function, (2020) International Review of Automatic Control (IREACO), 13 (6), pp. 273-282.
https://doi.org/10.15866/ireaco.v13i6.19331

Szabó, F., Szarka, Á., Finite Element Study of Rotating Elements of a Ventilator, (2019) International Review of Mechanical Engineering (IREME), 13 (6), pp. 326-331.
https://doi.org/10.15866/ireme.v13i6.17145

Marcalikova, Z., Sucharda, O., Modeling of Fiber-Reinforced Concrete and Finite Element Method, (2021) International Review of Civil Engineering (IRECE), 12 (1), pp. 11-19.
https://doi.org/10.15866/irece.v12i1.18636


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize