Open Access Open Access  Restricted Access Subscription or Fee Access

Determination of Force and Pressure Functions for Backward Cold Extrusion of Aluminum Alloy 1350


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i3.22052

Abstract


A key indicator for the design of cold extrusion technology and materials is the force and pressure required to perform the process under different production conditions. Hence, this work is concerned with finding force and pressure functions of Aluminum 1350 for backward cold extrusion using regression method of experimental data. In order to find force and pressure functions considered, different mathematical formulas are used to obtain the optimum relations where several variables such as cavity diameter, semi-finished sizes, and extrusion strain are taken into account. Lack of data necessary for the calculation of the functions considered, depending on the different technological and construction parameters such as extrusion process, processed material, degree of deformation, form and dimensions of the part, semi-finished product and active elements of the molds requires the continuation of studies and research in this field. Analytical formulas, obtained using regression method, are considered essential for design and optimization purposes concerning backward extrusion for Aluminum 1350. Three different mathematical formulas have been developed for both pressure and force where good agreement has been found when compared to experimental records. Furthermore, cavity diameter and extrusion strain are found to be influential factors that affect the coefficients of force and pressure functions of cold backward extrusion.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Aluminum; Backward Extrusion; Force; Pressure; Regression

Full Text:

PDF


References


Xu, Yuzhao; Li, Jingyuan; Qi, Mingfan; Liao, Luhai; Gao, Zhijun (2020). Enhanced mechanical properties of Mg-Zn-Y-Zr alloy by low-speed indirect extrusion. Journal of Materials Research and Technology, 9(5), 9856-9867.
https://doi.org/10.1016/j.jmrt.2020.06.029

Kuhnke, Stefan; Gensch, Felix; Nitschke, René; Sanabria, Vidal; Mueller, Soeren (2020). Influence of Die Surface Topography and Lubrication on the Product Quality during Indirect Extrusion of Copper-Clad Aluminum Rods.
Metals, 10(7), 888.
https://doi.org/10.3390/met10070888

Kuhnke, Stefan; Sanabria, Vidal; Gensch, Felix; Nitschke, Renè, Mueller, Soeren (2020). Numerical Investigations on Material Flow During Indirect Extrusion of Copper-Clad Aluminum Rods. Frontiers in Materials, 7, 157.
https://doi.org/10.3389/fmats.2020.00157

Alfaqs, F; Marahleh, G (2021). Force and pressure function formulation for direct cold extrusion of Aluminum alloy Al 1350 using regression method. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2021, (3): 038 - 043.
https://doi.org/10.33271/nvngu/2021-3/038

Luca, D. (2018). Finite element simulation and experimental investigation of cold forward extrusion process. MATEC Web of Conferences, 178, 02010.
https://doi.org/10.1051/matecconf/201817802010

Ku, Tae-Wan (2020). A Combined Cold Extrusion for a Drive Shaft: A Parametric Study on Tool Geometry. Materials, 13(10), 2244.
https://doi.org/10.3390/ma13102244

Rahim, S.N. Ab; Lajis, M.A.; Ariffin, S. (2015).
A Review on Recycling Aluminum Chips by Hot Extrusion Process. Procedia CIRP, 26(), 761-766.
https://doi.org/10.1016/j.procir.2015.01.013

Haase, Matthias; Tekkaya, A. Erman (2015). Cold extrusion of hot extruded Aluminum chips. Journal of Materials Processing Technology, 217(), 356-367.
https://doi.org/10.1016/j.jmatprotec.2014.11.028

Chojnacka, A.; Kawalko, J.; Koscielny, H.; Guspiel, J.; Drewienkiewicz, A.; Bieda, M.; Pachla, W.; Kulczyk, M.; Sztwiertnia, K.; Beltowska-Lehman, E. (2017). Corrosion anisotropy of titanium deformed by the hydrostatic extrusion. Applied Surface Science, 426(), 987-994.
https://doi.org/10.1016/j.apsusc.2017.07.231

Li, Xu Bo; Li, Feng; Li, Xue Wen (2018).
Effect of different temperatures on deformation characteristics of AZ31 magnesium alloy by continuous variable cross-section direct extrusion. The International Journal of Advanced Manufacturing Technology, 95(9-12), 4623-4628.
https://doi.org/10.1007/s00170-017-1557-6

de Moraes Costa, André Luiz; da Silva, Uilian Souza; Valberg, Henry Sigvart (2020). On the Friction Conditions in FEM Simulations of Cold Extrusion. Procedia Manufacturing, 47(), 231-236.
https://doi.org/10.1016/j.promfg.2020.04.202

Ferras, A.F.; Almeida, F. De; e Silva, E. Costa; Correia, A.; Silva, F.J.G. (2019).
Scrap production of extruded Aluminum alloys by direct extrusion. Procedia Manufacturing, 38(), 1731-1740.
https://doi.org/10.1016/j.promfg.2020.01.100

García-Domínguez, A., Claver, J., Camacho, A. M., & Sebastián, M. A. (2015).
Comparative Analysis of Extrusion Processes by Finite Element Analysis. Procedia Engineering, 100, 74-83.
https://doi.org/10.1016/j.proeng.2015.01.344

Tiernan, P., Hillery, M. T., Draganescu, B., & Gheorghe, M. (2005). Modelling of cold extrusion with experimental verification. Journal of Materials Processing Technology, 168(2), 360-366.
https://doi.org/10.1016/j.jmatprotec.2005.02.249

Al-Haidary, J., Haddad, J., Alfaqs, F., and Zayadin, F., Susceptibility of Aluminum Alloy 7075 T6 to Stress Corrosion Cracking, SAE Int. J. Mater. Manuf.14(2):2021.
https://doi.org/10.4271/05-14-02-0013

Abushgair, K., Al Alawin, A., Alfaqs,F., & Al-Hasan, M. Experimental Measurement of Material Stability of 2024 T351 Aluminum Alloy for Weight Measurement Applications. SAE International Journal of Materials and Manufacturing.
https://doi.org/10.4271/0515-01-0002

Andrade, F., Al-Qureshi, H., Hotza, D., Modeling of Clay Paste Extrusion through a Rectangular Die, (2013) International Journal on Advanced Materials and Technologies (IREAMT), 1 (6), pp. 235-240.

Whalen, Scott; Olszta, Matthew; Roach, Christian; Darsell, Jens; Graff, Daniel; Reza-E-Rabby, Md.; Roosendaal, Timothy; Daye, Wayne; Pelletiers, Tom; Mathaudhu, Suveen; Overman, Nicole (2019). High Ductility Aluminum Alloy made from Powder by Friction Extrusion.
Materialia, (), 100260.
https://doi.org/10.1016/j.mtla.2019.100260

Vijay Kumar, A.; Ratnam, C.H.; Kesava Rao, V.V.S.; Rohini Kumar, Ch.
(2019). Study on influence of Die Angle in Cold Extrusion on Properties of Nano Sic Reinforced 6061 Aluminum Alloy. Materials Today: Proceedings, 18(), 4366-4373.
https://doi.org/10.1016/j.matpr.2019.07.400

Franceschi, Alessandro; Jaeger, Fabian; Hoche, Holger; Oechsner, Matthias; Groche, Peter (2020). Calibration of the residual stresses with an active die during the ejection phase of cold extrusion. International Journal of Material Forming, ().
https://doi.org/10.1007/s12289-020-01572-x

Caspari, Michael; Landkammer, Phillipp; Steinmann, Paul (2020). Shape Optimization of a Backward Extrusion Process Using a Non-Invasive Form Finding Algorithm.
Procedia Manufacturing, 47(), 873-880.
https://doi.org/10.1016/j.promfg.2020.04.273

Nastaj, A.; Wilczynski, K. Optimization and Scale-Up for Polymer Extrusion. Polymers 2021, 13, 1547.
https://doi.org/10.3390/polym13101547

Henneberg, Johannes; Merklein, Marion (2020). Investigation on extrusion processes in sheet-bulk metal forming from coil. CIRP Journal of Manufacturing Science and Technology, (), S1755581720300948.
https://doi.org/10.1016/j.cirpj.2020.08.007

Shukur, Jalil J.; Jaber, Adil Sh. (2020). Experimental and finite element analysis study of die geometrical affect the forming load during extrusion process. IOP Conference Series: Materials Science and Engineering, 881(), 012045.
https://doi.org/10.1088/1757-899X/881/1/012045

Yi Guo;Yongfei Wang;Shengdun Zhao; (2021). Numerical Simulation and Experimental Analysis of the Semi-Solid Thixotropic Extrusion Forming Process for Producing the Thin-Wall Wrought Aluminum Alloy Mobile Phone Shells.
Materials.
https://doi.org/10.3390/ma14133505


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize