Open Access Open Access  Restricted Access Subscription or Fee Access

Optimizing the Modified Whitworth Quick Return Mechanism Using Taguchi and ANOVA Methods


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i3.21936

Abstract


The cutting time ratio is one of the most important parameters pointing out the effectiveness of the Whitworth quick return mechanism. The study supplemented a novel modification to a traditional Whitworth quick return mechanism to improve the cutting time ratio. The alteration was performed by consolidating a set of links to the conventional mechanism. This supplemental encompasses a crank, a ground, a sliding pivot, and a slotted link. A mathematical model was derived for the modified Whitworth quick return mechanism. This mathematical model was used for simulation to check the enhancement of cutting time ratio due to the new additional links. It was shown that the increase in the value of cutting time ratio exceeds eight times that of the original mechanism. Taguchi and Analysis of Variance (ANOVA) methods were utilized to verify the effectiveness and weight of each additional link on the enhancement of cutting time ratio. The outcomes manifested that the added links and their joining to the ground are more influential than the original links.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Taguchi and ANOVA Methods; Modified Whitworth Quick Return Mechanism; Cutting Time Ratio; Kinematic Modelling of Mechanism

Full Text:

PDF


References


R. Saravanan and V. Janakiraman, Study on Reduction of Machining Time in CNC Turning Centre by Genetic Algorithm, Int. Conf. Comput. Intell. Multimed. Appl., pp. 481-486, 2007.
https://doi.org/10.1109/ICCIMA.2007.92

R. Paper, O. Montiel-ross, and P. Melin, Methodology to Optimize Manufacturing Time for a CNC Using a High Performance Implementation of ACO, Int. J. Adv. Robot. Syst. Artic., vol. 9, no. 4, pp. 1-10, 2012.
https://doi.org/10.5772/50527

N. Tapoglou, J. Mehnen, J. Butans, and N. I. Morar, Online on-Board Optimization of Cutting Parameter for Energy Efficient CNC Milling, Procedia CIRP, vol. 40, pp. 384-389, 2016.
https://doi.org/10.1016/j.procir.2016.01.072

H. Park, B. Qi, D. Dang, and D. Yu, Development of Smart Machining System for Optimizing Feedrates to Minimize Machining Time, J. Comput. Des. Eng., vol. 5, no. 3, pp. 299-304, 2018.
https://doi.org/10.1016/j.jcde.2017.12.004

M. Hallmann, S. Goetz, B. Schleich, and S. Wartzack, Optimization of Build Time and Support Material Quantity for the Additive Manufacturing of Non-Assembly Mechanisms, Procedia CIRP, vol. 84, pp. 271-276, 2019.
https://doi.org/10.1016/j.procir.2019.03.197

K. Monkova and P. P. Monka, Three views on kinematic analysis of Whitworth mechanism of a shaping machine, Int. J. Mech. Eng. Robot. Res., vol. 9, no. 7, pp. 960-966, 2020.
https://doi.org/10.18178/ijmerr.9.7.960-966

L. V. B. Rao and K. Lakshminarayana, Optimal Designs of RSSR Crank-Rocker Mechanism-I. General Time Ratio, Mech. Mach. Theory, vol. 19, no. 4/5, pp. 431-441, 1984.
https://doi.org/10.1016/0094-114X(84)90102-2

F. O. Suareo and K. C. Gupta, Design of Quick-Returning R-S-S-R Mechanisms, J. Mech. Transm. Autom. Des., vol. 110, no. 4, pp. 423-428, 1988.
https://doi.org/10.1115/1.3258939

R. Singh and C. Author, Analysis of Whitworth Quick Return Mechanism using ANSYS, Res. Rev. J. Mech. Mach., vol. 3, no. 1, pp. 1-8, 2021.

R.-F. Fung and K.-W. Chen, Constant Speed Control of the Quick Return Mechanism Driven by a DC Motor, JSME Int. Journal, Ser. C, vol. 40, no. 3, pp. 454-461, 1997.
https://doi.org/10.1299/jsmec.40.454

F. Lin, S. Member, and R. Wai, A Hybrid Computed Torque Controller Using Fuzzy Neural Network for Motor-Quick-Return Servo Mechanism, IEEE/ASME Trans. Mechatronics, vol. 6, no. 1, pp. 75-89, 2001.
https://doi.org/10.1109/3516.914394

M. Tomic, M. Miloševic, N. Tomic, N. D. Pavlovic, and V. Pavlovic, Remote Control of the Mechatronic Redesigned Slider-Crank Mechanism in Service, Facta Univ. Ser. Mech. Eng., vol. 15, no. 2, pp. 257-268, 2017.
https://doi.org/10.22190/FUME170510013T

M. Tennomi, Y. Suzuki, T. Tsuji, and T. Watanabe, High-speed gripper with position-alignment functionality based on quick-return mechanism, Mech. Mach. Sci., vol. 73, pp. 2585-2597, 2019.
https://doi.org/10.1007/978-3-030-20131-9_256

R. P. Podhorodeski, S. B. Nokleby, and J. D. Wittchen, Quick-Return Mechanism Design and Analysis Projects, Int. J. Mech. Eng. Educ., vol. 32, no. 2, pp. 100-114, 2004.
https://doi.org/10.7227/IJMEE.32.2.2

L. N. Robert, Kinematics and Dynamics of Machinery. USA: 1st ed., McGraw-Hill, 2008.

W. H. Hsieh and C. H. Tsai, A study on a novel quick return mechanism, Trans. Can. Soc. Mech. Eng., vol. 33, no. 3, pp. 139-152, 2009.
https://doi.org/10.1139/tcsme-2009-0033

J. J. Dicker, G. R. Pennock, and J. E. Shigley, Theory of Machines and Mechanisms, USA: 4th edition, Oxford University Press, Inc., 2015.

A. Vaz and G. K. Thommen, Modeling and Simulation of the Dynamics of the Quick Return Mechanism : A Bond Graph Approach, 10th Natl. Conf. Ind. Probl. Mach. Mech. (IPRoMM 2010), no. 34, pp. 23-30, 2010.

K. Monková, P. Monka, S. Hloch, and J. Valíček, Kinematic Analysis of Quick-Return Mechanism in Three Various Approaches, Teh. Vjesn., vol. 18, no. 2, pp. 295-299, 2011.

J. G. Dong, Optimization design on the performance of the shaper, Appl. Mech. Mater., vol. 472, pp. 3-7, 2014.
https://doi.org/10.4028/www.scientific.net/AMM.472.3

S. N. Dwivedit, Application of Whitworth Quick Retrun Mechanism for High Velocity Impacting Press, Mech. Mach. Theory, vol. 19, no. 1, pp. 51-59, 1984.
https://doi.org/10.1016/0094-114X(84)90008-9

J. S. A. I. Praneeth, A. K. Sreedharala, N. K. Darisi, and M. Elangovan, Design of whitworth quick return mechanism using non-circular gears, Int. J. Mech. Prod. Eng., vol. 2, no. 6, pp. 59-64, 2014.

A. Aggarwal, H. Singh, P. Kumar, and M. Singh, Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi's technique-A comparative analysis, J. Mater. Process. Technol., vol. 200, no. 1-3, pp. 373-384, 2008.
https://doi.org/10.1016/j.jmatprotec.2007.09.041

S. Miladinović, S. Veličković, and M. Novaković, Application of Taguchi Method for the Selection of Optimal Parameters of Planetary Driving Gear, Appl. Eng. Lett., vol. 1, no. 4, pp. 2466-4847, 2016.

A. A. Permanasari, Sukarni, P. Puspitasari, S. B. Utama, and F. A. Yaqin, Experimental Investigation and Optimization of Floating Blade Water Wheel Turbine Performance Using Taguchi Method and Analysis of Variance (ANOVA), IOP Conf. Ser. Mater. Sci. Eng., vol. 515, no. 1, 2019.
https://doi.org/10.1088/1757-899X/515/1/012086

D. S. Khazaal, H. M. H. Al-Khafaji, and I. A. Abdulsahib, Holes' Parameters Analysis of a Perforated Thin-Walled Lipped Beam Buckled Under a Bending Load, Int. J. Automot. Mech. Eng., vol. 18, no. 3, pp. 8927-8940, 2021.
https://doi.org/10.15282/ijame.18.3.2021.07.0684

Samantaraya, D., Lakade, S., Optimization of Machining Parameters in Hard Turning of Automotive Gears with PCBN tool using Taguchi Method, (2021) International Review of Mechanical Engineering (IREME), 15 (5), pp. 278-286.
https://doi.org/10.15866/ireme.v15i5.21070

Afnison, W., Alwi, E., Amin, B., Maksum, H., Purwanto, W., Kurniawan, F., Optimization Study of Electric Regenerative Shock Absorber (ERSA) Using Taguchi Method, (2021) International Review of Mechanical Engineering (IREME), 15 (6), pp. 317-324.
https://doi.org/10.15866/ireme.v15i6.20621

A. Shabana, Computational Dynamics, Third Edit. John Wiley & Sons Ltd, 2010.

G. Taguchi and R. Jugulum, The Mahalanobis-Taguchi Strategy: A Pattern Technology System., Technology, pp. 1-235, 2002.
https://doi.org/10.1002/9780470172247

Rupert G. Miller, Beyond ANOVA, Basics of Applied Statistics, John Wiley & Sons, Inc., Canada, 1986.

D. C. Montgomery, Design and Analysis of Experiments, Eighth Edi., no. Fifth edition. John Wiley & Sons, Inc., 2013.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize