Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Study on Cavitation Phenomenon in an In-Line Centrifugal Pump


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i3.21705

Abstract


Cavitation in pumps causes unwanted consequences, such as noise, vibrations, and system oscillations. These result in reduced pump efficiency and unstable operation range. Therefore, this study investigates the cavitation behaviours of newly designed centrifugal pumps experimentally and numerically. Computational Fluid Dynamics (CFD) was used to analyse cavitation flow behaviours. The Rayleigh–Plesset expression for bubble dynamics was employed to capture the cavitation phenomenon inside the pump. Numerical simulations were performed and validated by experiments, and good performance characteristics were obtained. The estimated total head drop lines for different cavitation flow rates and performances were analysed numerically. Cavitation was observed near the impeller blade suction for the leading-edge condition in impeller flow passage; moreover, a lower pressure was observed near the impeller blade shroud than the hub in the steady-state condition.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Cavitation; Cavitation Model; Computational Fluid Dynamics; Flow Behaviour; In-Line Centrifugal Pump

Full Text:

PDF


References


S. H. Suh, M. Rakibuzzaman, K. W. Kim, H. H. Kim, I. S. Yoon, M. T. Cho, A Study on Energy Saving Rate for Variable Speed Condition of Multistage Centrifugal Pump, Journal of Thermal Science, Vol. 24, n. 6, pp. 566-573, 2015.
https://doi.org/10.1007/s11630-015-0824-9

S. R. Shah, S. V. Jain, R. N. Patel, V. J. Lakhera, CFD for Centrifugal Pumps: A Review of the State-of-the-Art, Procedia Engineering, Vol. 51, pp. 715-720, 2013.
https://doi.org/10.1016/j.proeng.2013.01.102

B. Schiavello, F. C. Visser, Pump cavitation-various NPSHR criteria, NPSHA margins, and impeller life expectancy, Proc. 25th Int. Pump Users Symp., Texas, 2009, pp. 113-144.
https://doi.org/10.21423/R1XM30

J. F. Gülich, Centrifugal Pumps (Springer, 2014).
https://doi.org/10.1007/978-3-642-40114-5

T. Asahara, Japan Association of Agriculture Engineering Enterprises, In Pumping station engineering hand book (Tokyo, 1991, 50-90).

O. Coutier-Delgosha, R. Fortes-Patella, J. L. Reboud, Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation, Journal of Fluids Engineering, Vol. 125, pp. 38-45, 2003.
https://doi.org/10.1115/1.1524584

Obregon, L., Valencia, G., Duarte Forero, J., Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD, (2019) International Review on Modelling and Simulations (IREMOS), 12 (4), pp. 245-252.
https://doi.org/10.15866/iremos.v12i4.18009

M. P. Fard, E. Roohi, Transient Simulations of Cavitating Flows Using a Modified Volume of Fluid (VOF) Technique, International Journal of Computational Fluid Dynamics, Vol. 22, pp. 97-114, 2008.
https://doi.org/10.1080/10618560701733657

R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. Chyczewski, J. W. Lindau, H. J. Gibeling, S. Venkateswaran, T. R. Govindan, A Pre-conditioned Navier-Stokes Method for Two Phase Flows with Application to Cavitation Prediction, Computers and Fluids, Vol. 29, n. 8, pp. 849-875, 2000.
https://doi.org/10.1016/S0045-7930(99)00039-0

B. R. Shin, S. Yamamoto, X. Yuan, Application of Preconditioning Method to Gas-Liquid Two-Phase Flow Computations, ASME Journal of Fluids Engineering, Vol. 126, n. 4, pp. 605-612, 2004.
https://doi.org/10.1115/1.1777230

Prada Botia, G., Valencia Ochoa, G., Duarte Forero, J., CFD Analysis of Hydraulic Performance in Small Centrifugal Pumps Operating with Slurry, (2019) International Review on Modelling and Simulations (IREMOS), 12 (6), pp. 364-372.
https://doi.org/10.15866/iremos.v12i6.18382

Kassanos, I., Chrysovergis, M., Anagnostopoulos, J., Charalampopoulos, G., Rokas, S., Lekanidis, S., Kontominas, I., Papantonis, D., Numerical Optimization of a Centrifugal Pump Impeller with Splitter Blades Running in Reverse Mode, (2016) International Review of Mechanical Engineering (IREME), 10 (4), pp. 215-224.
https://doi.org/10.15866/ireme.v10i4.8375

X. J. Li, Z. Y. Pan, D. Q. Zhang, S. Q. Yuan, Centrifugal Pump Performance Drop Due to Leading Edge Cavitation, IOP Conference Series. Earth and Environmental Science, Vol. 15, n. 3, 2012.
https://doi.org/10.1088/1755-1315/15/3/032058

X. J. Li, S. Q. Yuan, Z. Y. Pan, Y. X. Fu, Numerical Simulation of Leading Edge Cavitation Within the Whole Flow Passage of a Centrifugal Pump, Science China Technological Sciences, Vol. 56, pp. 2156-2162, 2013.
https://doi.org/10.1007/s11431-013-5311-5

S. Kim, K.-Y. Lee, J.-H. Kim, Y.-S. Choi, A Numerical Study on the Improvement of Suction Performance and Hydraulic Efficiency for a Mixed-Flow Pump Impeller, Mathematical Problems in Engineering, Vol. 2014, n. 269483, p. 17, 2014.
https://doi.org/10.1155/2014/269483

M. Rakibuzzaman, S.-H. Suh, H.-H. Kim, M.-T. Cho, B.-R. Shin, Cavitating Flow Analysis of Multistage Centrifugal Pump, KSFM Journal of Fluid Mechanics, Vol. 18, n. 1, pp. 65-71, 2015.
https://doi.org/10.5293/kfma.2015.18.1.065

M. Rakibuzzaman, K. Kim, S.-H. Suh, Numerical and Experimental Investigation of Cavitation Flows in a Multistage Centrifugal Pump, Journal of Mechanical Science and Technology, Vol. 32, n. 3, pp. 1071-1078, 2018.
https://doi.org/10.1007/s12206-018-0209-6

M. A. Hosien, S. M. Selim, Experimental and Theoretical Investigation on the Effect of Pumped Water Temperature on Cavitation Breakdown in Centrifugal Pumps, Journal of Applied Fluid Mechanics, Vol. 10, n. 4, pp. 1079-1089, 2017.
https://doi.org/10.18869/acadpub.jafm.73.241.27589

M. Kaya, E. Ayder, Prediction of Cavitation Performance of Radial Flow Pumps, Journal of Applied Fluid Mechanics, Vol. 10, n. 5, pp. 1397-1408, 2017.
https://doi.org/10.18869/acadpub.jafm.73.242.27827

M. Ennouri, H. Kanfoudi, A. B. H. Taher, R. Zgolli, Numerical Flow Simulation and Cavitation Prediction in a Centrifugal Pump Using an SST-SAS Turbulence Model, Journal of Applied Fluid Mechanics, Vol. 12, n. 1, pp. 25-39, 2019.
https://doi.org/10.29252/jafm.75.253.28771

C. Wang, Y. Zhang, J. Zhu, Z. Yuan, B. Lu, Effect of Cavitation and Free-Gas Entrainment on the Hydraulic Performance of a Centrifugal Pump, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 235, n. 3, pp. 440-453, 2020.
https://doi.org/10.1177/0957650920939343

X. Shen, D. Zhang, B. Xu, C. Ye, W. Shi, Experimental and Numerical Investigation of Tip Leakage Vortex Cavitation in an Axial Flow Pump under Design and Off-design Conditions, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 235, n. 1, pp. 70-80, 2020.
https://doi.org/10.1177/0957650920906295

Espinel, E., Prada, G., Rojas, J., Cavitation Study in Centrifugal Pumps Through Acoustic Signal Analysis, (2021) International Journal on Engineering Applications (IREA), 9 (5), pp. 258-267.
https://doi.org/10.15866/irea.v9i5.19865

Y. Shi, H. W. Zhu, Research on the Flow Characteristic in a Multi-stage Multiphase Pump by Numerical Simulations, Journal of Applied Fluid Mechanics, Vol. 14, n. 2, pp. 555-566, 2021.
https://doi.org/10.47176/jafm.14.02.31797

ISO 5198: 1987 (E), Centrifugal, mixed flow and axial pumps-code for hydraulic performance tests-precision class, International Standard.

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, 1995).

F. Bakir, R. Rey, A. G. Gerber, T. Belamri, B. Hutchinson, Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer, International Journal of Rotating Machinery, Vol. 10, pp. 15-25, 2004.
https://doi.org/10.1080/10236210490258034

Ansys Inc. 2013, ANSYS-CFX (CFX Introduction, CFX Reference guide, CFX Tutorials, CFX-Pre User's Guide, CFX-Solver Manager User's Guide, Theory Guide), release 14.5, USA.

N. J. Georgiadis, D. A. Yoder, W. B. Engblorn, Evaluation of Modified Two-Equation Turbulence Models for Jet Flow Predictions, AIAA Journal, Vol. 44, n. 12, pp. 3107-3114, 2006.
https://doi.org/10.2514/1.22650

Espinel, E., Rojas, J., Florez Solano, E., Computational Fluid Dynamics Study of NACA 0012 Airfoil Performance with OpenFOAM®, (2021) International Review of Aerospace Engineering (IREASE), 14 (4), pp. 201-210.
https://doi.org/10.15866/irease.v14i4.19348

Sunil, A., Tide, P., Numerical Investigations on Suppression of Aeolian Vibrations on a Tall Chimney Using Helical Strakes, (2019) International Journal on Engineering Applications (IREA), 7 (5), pp. 152-159.
https://doi.org/10.15866/irea.v7i5.17764


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize